Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей — страница 19 из 19

TESS. The Astrophysical Journal, 883: 11.

[83] Jacobson T. (2018) Entropy from Carnot to Bekenstein. arXiv:1810.07839.

[84] Right. Hon. Lord Kelvin G. C.V.O. D.C.L. LL.D. F.R.S. M.R.I. (1901) Nineteenth century clouds over the dynamical theory of heat and light.The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(7): 1–40.

[85] Kokkotas K. D. (2008) Gravitational wave astronomy. Reviews in Modern Astrophysics, 20: 140; arXiv:0809.1602.

[86] Leleu A. et al. (2021) Six transiting planets and a chain of Laplace resonances in TOI-178. Astronomy & Astrophysics, 649: A26; arXiv:2101.09260.

[87] Levin J., Perez-Giz G. (2008) A periodic table for black hole orbits. Physical Review D, 77: 103005; DOI:10.1103/PhysRevD.77.103005; arXiv:0802.0459.

[88] Lobo F. S. N. (2008) Exotic solutions in General Relativity: Traversable wormholes and 'warp drive' spacetimes.Classical and Quantum Gravity Research, 1–78. Nova Sci. Pub. ISBN 978–1–60456–366–5; arXiv:0710.4474.

[89] Maroney O. (2009) Information processing and thermodynamic entropy. In Stanford Encyclopedia of Philosophy, E. N. Zalta (ed.); https://plato.stanford.edu/archives/fall2009/entries/information-entropy/

[90] Maudlin T. (2019) Philosophy of Physics: Quantum Theory (Princeton Foundations ofContemporary Philosophy). Princeton and Oxford: Princeton University Press.

[91] Moore C. (1993) Braids in classical dynamics. Physical Review Letters, 70: 3675–3679.

[92] Moore W. (2015) Schrödinger: Life and Thought. Cambridge University Press, 2015.

[93] Musielak Z. E., Quarles B. (2014) The three-body problem. Reports on Progress in Physics, 77: 065901; arXiv:1508.02312.

[94] Myrvold W., Genovese M., Shimony A. (2004) Bell's theorem. In Stanford Encyclopedia of Philosophy, E. N. Zalta (ed.); https://plato.stanford.edu/archives/fall2020/entries/bell-theorem/

[95] Nichols D. A., Owen R., Zhang F., Zimmerman A., Brink J., Chen Y., Kaplan J. D., Lovelace G., Matthews K. D., Scheel M. A., Thorne K. S. (2011) Visualizing spacetime curvature via frame-drag vortexes and tidal tendexes I. General theory and weak-gravity applications. Physical Review D, 84: 124014; arXiv:1108.5486.

[96] Norsen T. (2017) Foundations of Quantum Mechanics. An Exploration of the Physical Meaningof Quantum Theory. Springer.

[97] Norsen T. (2013) The pilot-wave perspective on quantum scattering and tunneling.American Journal of Physics, 81: 258; arXiv:1210.7265.

[98] Norsen T. (2014) The pilot-wave perspective on spin. American Journal of Physics, 82: 337–348; arXiv:1305.1280.

[99] Penrose O. (1970) Foundations of Statistical Mechanics. Oxford: Pergamon Press.

[100] Scholtz J., Unwin J. (2019) What if planet 9 is a primordial black hole? arXiv:1909.11090l.

[101] Shoshany B. (2019) Lectures on faster-than-light travel and time travel. SciPost Physics Lecture Notes, 10; DOI:10.21468/SciPostPhysLectNotes.10; arXiv:1907.04178.

[102] Sternfeld A. J. (1934) Sur les trajectoires permettant d'approcher d'un corps attractif central à partir d'une orbite keplérienne donnée. Comptes rendus de l'Académie des sciences, Paris, 198 (1): 711–713.

[103] Thorne K. S., Blandford R. D. (2017) Modern Classical Physics: Optics, Fluids, Plasmas,Elasticity, Relativity, and Statistical Physics. Princeton University Press.

[104] Tiscareno M. S., Thomas P. C., Burns J. A. (2009) The rotation of Janus and Epimetheus. Icarus, 204: 254–261; arXiv:0904.3515.

[105] Toretti R. (1983) Relativity and Geometry. Pergamon Press.

[106] Wallace D. (2012) Decoherence and its role in the modern measurement problem. Philosophical Transactions of the Royal Society A, 370: 4576–4593; arXiv:1111.2187.

[107] Westfall R. (1981) Never at Rest: A Biography of Isaac Newton. Cambridge: Cambridge University Press.

[108] Wheeler J. A., Ford K. (2000) Geons, Black Holes, and Quantum Foam: A Life in Physics. Norton.

[109] Williams R. (2009) September, 1911–The Sackur – Tetrode equation: how entropy met quantum mechanics.APS News August/September, 18(8); https://www.aps.org/publications/apsnews/200908/physicshistory.cfm

[110] Witten E. (2020) Searching for a black hole in the outer Solar System. arXiv:2004.14192.

[111] Xiaoming Li, Yipeng Jing, Shijun Liao. (2018) The 1223 new periodic orbits of planar three-body problem with unequal mass and zero angular momentum. Astronomical Society of Japan, 70 (4): 64; DOI:10.1093/pasj/psy057; arXiv: 1709.04775.

[112] Zurek W. H. (2018) Quantum theory of the classical: quantum jumps, Born's rule, and objective classical reality via quantum Darwinism. Philosophical Transactions of the Royal Society A, 376: 20180107; arXiv:1807.02092.

Источники

Прогулка 1

Рис. 1.3: NASA/Ames/JPL–Caltech

Рис. 1.6: European Southern Observatory/M. Kornmesser

Рис. 1.7: Shutterstock


Прогулка 2

Рис. 2.2: NASA, Apollo 8 Crew, Bill Anders, Jim Weigang

Рис. 2.5: China National Space Agency

Рис. 2.6: ИПМ им. М. В. Келдыша РАН

Рис. 2.7: NASA

Рис. 2.15: Tesla

Рис. 3.1: C. Madsen/ESO


Прогулка 3

Рис. 3.3: Smithsonian Institution, University of St Andrews Library, University of Cambridge

Рис. 3.5: NASA

Рис. 3.7: NASA/JPL–Caltech

Рис. 3.9: Lexicon/Wikipedia/CC BY-SA 3.0

Рис. 3.10: NASA, ESA, Caltech, Southwest Research Institute

Рис. 3.13: Event Horizon Telescope collaboration

Рис. 3.14: NASA, ESA, STScI/AURA, Hubble сollaboration

Рис. 3.15: NASA, ESA, T. Brown and J. Tumlinson/STScI

Рис. 3.16: Max Planck Institute for Astrophysics

Рис. 3.17: Shutterstock


Прогулка 4

Рис. 4.4: А. Семихатов

Рис. 4.5: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Рис. 4.6: NASA/JPL–Caltech/Space Science Institute

Рис. 4.7: International Centre for Global Earth Models

Рис. 4.8: NASA/JPL–Caltech/MIT/GSFC

Рис. 4.11: Alan Chamberlin/JPL–Caltech

Рис. 4.12: NASA/JPL/Space Science Institute

Рис. 4.13: Legion-Media

Рис. 4.14: NASA//JPL–Caltech

Рис. 4.16: Shijun Liao/Shanghai Jiao Tong University


Прогулка 5

Рис. 5.2: Legion-Media

Рис. 5.6: CERN, GeoEye/e-GEOS

Рис. 5.9: Shutterstock

Рис. 5.13: Andrew Z. Colvin/Wikipedia/CC BY-SA 3.0

Рис. 5.14: NASA, JPL, Exoplanet Travel Bureau

Рис. 5.15: Shutterstock

Рис. 5.16: NASA


Прогулка 6

Рис. 6.3: Tesla

Рис. 6.5: Neil Kaye

Рис. 6.8 и 6.9: Rohan Chabukswar/United Technologies Research Center Ireland

Рис. 6.17 и 6.18: Janna Levin, Gabe Perez-Giz/Columbia University

Рис. 6.19: SpaceX

Рис. 6.20: NASA, ESA, STScI, Hubble

Рис. 6.23: Роскосмос

Рис. 6.25: Яндекс/Геоцентр-Консалтинг


Прогулка 7

Рис. 7.2: Olga Guryanova/Unsplash

Рис. 7.6: NASA, ESA, Z. Levay and R. van der Marel/STScI, T. Hallas, A. Mellinger

Рис. 7.7, 7.8 и 7.9: Institute of Quantum Physics/Ulm University

Рис. 7.10: Shutterstock

Рис. 7.11: Barak Shoshany/Perimeter Institute for Theoretical Physics

Рис. 7.12: ESO/MPE/S. Gillessen, UCLA Galactic Center Group

Рис. 7.13: UCLA Galactic Center Group

Рис. 7.14: H. Marshall/MIT, CXC, NASA, F. Zhou, F. Owen/NRAO, J. Biretta/STScI, E. Perlman/UMBC


Прогулка 9

Рис. 9.1: Shutterstock

Рис. 9.4: Shutterstock

Рис. 9.5: Legion-Media

Рис. 9.7: Shutterstock

Рис. 9.12: Shutterstock

Рис. 9.16: Shutterstock

Рис. 9.17: Shutterstock


Прогулка 10

Рис. 10.2: Shutterstock

Рис. 10.4: NASA/SDO/GSFC

Рис. 10.6: Ralejs Tepfers/Chalmers University of Technology, Shirley Chiang/University of California, Berkeley

Рис. 10.13: Legion-Media


Прогулка 11

Рис. 11.3: CERN

Рис. 11.10: ГМИИ им. А. С. Пушкина

Рис. 11.11: Benjamin Couprie/Institut International de Physique Solvay

Рис. 11.13: Smithsonian Institution

Рекомендуем книги по теме


Уравнение Бога: В поисках теории всего

Митио Каку



Структура реальности: Наука параллельных вселенных

Дэвид Дойч



Вселенная в вопросах и ответах: Задачи и тесты по астрономии и космонавтике

Владимир Сурдин



Шесть невозможностей: Загадки квантового мира

Джон Гриббин