TESS. The Astrophysical Journal, 883: 11.
[83] Jacobson T. (2018) Entropy from Carnot to Bekenstein. arXiv:1810.07839.
[84] Right. Hon. Lord Kelvin G. C.V.O. D.C.L. LL.D. F.R.S. M.R.I. (1901) Nineteenth century clouds over the dynamical theory of heat and light.The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(7): 1–40.
[85] Kokkotas K. D. (2008) Gravitational wave astronomy. Reviews in Modern Astrophysics, 20: 140; arXiv:0809.1602.
[86] Leleu A. et al. (2021) Six transiting planets and a chain of Laplace resonances in TOI-178. Astronomy & Astrophysics, 649: A26; arXiv:2101.09260.
[87] Levin J., Perez-Giz G. (2008) A periodic table for black hole orbits. Physical Review D, 77: 103005; DOI:10.1103/PhysRevD.77.103005; arXiv:0802.0459.
[88] Lobo F. S. N. (2008) Exotic solutions in General Relativity: Traversable wormholes and 'warp drive' spacetimes.Classical and Quantum Gravity Research, 1–78. Nova Sci. Pub. ISBN 978–1–60456–366–5; arXiv:0710.4474.
[89] Maroney O. (2009) Information processing and thermodynamic entropy. In Stanford Encyclopedia of Philosophy, E. N. Zalta (ed.); https://plato.stanford.edu/archives/fall2009/entries/information-entropy/
[90] Maudlin T. (2019) Philosophy of Physics: Quantum Theory (Princeton Foundations ofContemporary Philosophy). Princeton and Oxford: Princeton University Press.
[91] Moore C. (1993) Braids in classical dynamics. Physical Review Letters, 70: 3675–3679.
[92] Moore W. (2015) Schrödinger: Life and Thought. Cambridge University Press, 2015.
[93] Musielak Z. E., Quarles B. (2014) The three-body problem. Reports on Progress in Physics, 77: 065901; arXiv:1508.02312.
[94] Myrvold W., Genovese M., Shimony A. (2004) Bell's theorem. In Stanford Encyclopedia of Philosophy, E. N. Zalta (ed.); https://plato.stanford.edu/archives/fall2020/entries/bell-theorem/
[95] Nichols D. A., Owen R., Zhang F., Zimmerman A., Brink J., Chen Y., Kaplan J. D., Lovelace G., Matthews K. D., Scheel M. A., Thorne K. S. (2011) Visualizing spacetime curvature via frame-drag vortexes and tidal tendexes I. General theory and weak-gravity applications. Physical Review D, 84: 124014; arXiv:1108.5486.
[96] Norsen T. (2017) Foundations of Quantum Mechanics. An Exploration of the Physical Meaningof Quantum Theory. Springer.
[97] Norsen T. (2013) The pilot-wave perspective on quantum scattering and tunneling.American Journal of Physics, 81: 258; arXiv:1210.7265.
[98] Norsen T. (2014) The pilot-wave perspective on spin. American Journal of Physics, 82: 337–348; arXiv:1305.1280.
[99] Penrose O. (1970) Foundations of Statistical Mechanics. Oxford: Pergamon Press.
[100] Scholtz J., Unwin J. (2019) What if planet 9 is a primordial black hole? arXiv:1909.11090l.
[101] Shoshany B. (2019) Lectures on faster-than-light travel and time travel. SciPost Physics Lecture Notes, 10; DOI:10.21468/SciPostPhysLectNotes.10; arXiv:1907.04178.
[102] Sternfeld A. J. (1934) Sur les trajectoires permettant d'approcher d'un corps attractif central à partir d'une orbite keplérienne donnée. Comptes rendus de l'Académie des sciences, Paris, 198 (1): 711–713.
[103] Thorne K. S., Blandford R. D. (2017) Modern Classical Physics: Optics, Fluids, Plasmas,Elasticity, Relativity, and Statistical Physics. Princeton University Press.
[104] Tiscareno M. S., Thomas P. C., Burns J. A. (2009) The rotation of Janus and Epimetheus. Icarus, 204: 254–261; arXiv:0904.3515.
[105] Toretti R. (1983) Relativity and Geometry. Pergamon Press.
[106] Wallace D. (2012) Decoherence and its role in the modern measurement problem. Philosophical Transactions of the Royal Society A, 370: 4576–4593; arXiv:1111.2187.
[107] Westfall R. (1981) Never at Rest: A Biography of Isaac Newton. Cambridge: Cambridge University Press.
[108] Wheeler J. A., Ford K. (2000) Geons, Black Holes, and Quantum Foam: A Life in Physics. Norton.
[109] Williams R. (2009) September, 1911–The Sackur – Tetrode equation: how entropy met quantum mechanics.APS News August/September, 18(8); https://www.aps.org/publications/apsnews/200908/physicshistory.cfm
[110] Witten E. (2020) Searching for a black hole in the outer Solar System. arXiv:2004.14192.
[111] Xiaoming Li, Yipeng Jing, Shijun Liao. (2018) The 1223 new periodic orbits of planar three-body problem with unequal mass and zero angular momentum. Astronomical Society of Japan, 70 (4): 64; DOI:10.1093/pasj/psy057; arXiv: 1709.04775.
[112] Zurek W. H. (2018) Quantum theory of the classical: quantum jumps, Born's rule, and objective classical reality via quantum Darwinism. Philosophical Transactions of the Royal Society A, 376: 20180107; arXiv:1807.02092.
Источники
Прогулка 1
Рис. 1.3: NASA/Ames/JPL–Caltech
Рис. 1.6: European Southern Observatory/M. Kornmesser
Рис. 1.7: Shutterstock
Прогулка 2
Рис. 2.2: NASA, Apollo 8 Crew, Bill Anders, Jim Weigang
Рис. 2.5: China National Space Agency
Рис. 2.6: ИПМ им. М. В. Келдыша РАН
Рис. 2.7: NASA
Рис. 2.15: Tesla
Рис. 3.1: C. Madsen/ESO
Прогулка 3
Рис. 3.3: Smithsonian Institution, University of St Andrews Library, University of Cambridge
Рис. 3.5: NASA
Рис. 3.7: NASA/JPL–Caltech
Рис. 3.9: Lexicon/Wikipedia/CC BY-SA 3.0
Рис. 3.10: NASA, ESA, Caltech, Southwest Research Institute
Рис. 3.13: Event Horizon Telescope collaboration
Рис. 3.14: NASA, ESA, STScI/AURA, Hubble сollaboration
Рис. 3.15: NASA, ESA, T. Brown and J. Tumlinson/STScI
Рис. 3.16: Max Planck Institute for Astrophysics
Рис. 3.17: Shutterstock
Прогулка 4
Рис. 4.4: А. Семихатов
Рис. 4.5: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
Рис. 4.6: NASA/JPL–Caltech/Space Science Institute
Рис. 4.7: International Centre for Global Earth Models
Рис. 4.8: NASA/JPL–Caltech/MIT/GSFC
Рис. 4.11: Alan Chamberlin/JPL–Caltech
Рис. 4.12: NASA/JPL/Space Science Institute
Рис. 4.13: Legion-Media
Рис. 4.14: NASA//JPL–Caltech
Рис. 4.16: Shijun Liao/Shanghai Jiao Tong University
Прогулка 5
Рис. 5.2: Legion-Media
Рис. 5.6: CERN, GeoEye/e-GEOS
Рис. 5.9: Shutterstock
Рис. 5.13: Andrew Z. Colvin/Wikipedia/CC BY-SA 3.0
Рис. 5.14: NASA, JPL, Exoplanet Travel Bureau
Рис. 5.15: Shutterstock
Рис. 5.16: NASA
Прогулка 6
Рис. 6.3: Tesla
Рис. 6.5: Neil Kaye
Рис. 6.8 и 6.9: Rohan Chabukswar/United Technologies Research Center Ireland
Рис. 6.17 и 6.18: Janna Levin, Gabe Perez-Giz/Columbia University
Рис. 6.19: SpaceX
Рис. 6.20: NASA, ESA, STScI, Hubble
Рис. 6.23: Роскосмос
Рис. 6.25: Яндекс/Геоцентр-Консалтинг
Прогулка 7
Рис. 7.2: Olga Guryanova/Unsplash
Рис. 7.6: NASA, ESA, Z. Levay and R. van der Marel/STScI, T. Hallas, A. Mellinger
Рис. 7.7, 7.8 и 7.9: Institute of Quantum Physics/Ulm University
Рис. 7.10: Shutterstock
Рис. 7.11: Barak Shoshany/Perimeter Institute for Theoretical Physics
Рис. 7.12: ESO/MPE/S. Gillessen, UCLA Galactic Center Group
Рис. 7.13: UCLA Galactic Center Group
Рис. 7.14: H. Marshall/MIT, CXC, NASA, F. Zhou, F. Owen/NRAO, J. Biretta/STScI, E. Perlman/UMBC
Прогулка 9
Рис. 9.1: Shutterstock
Рис. 9.4: Shutterstock
Рис. 9.5: Legion-Media
Рис. 9.7: Shutterstock
Рис. 9.12: Shutterstock
Рис. 9.16: Shutterstock
Рис. 9.17: Shutterstock
Прогулка 10
Рис. 10.2: Shutterstock
Рис. 10.4: NASA/SDO/GSFC
Рис. 10.6: Ralejs Tepfers/Chalmers University of Technology, Shirley Chiang/University of California, Berkeley
Рис. 10.13: Legion-Media
Прогулка 11
Рис. 11.3: CERN
Рис. 11.10: ГМИИ им. А. С. Пушкина
Рис. 11.11: Benjamin Couprie/Institut International de Physique Solvay
Рис. 11.13: Smithsonian Institution
Рекомендуем книги по теме
Уравнение Бога: В поисках теории всего
Митио Каку
Структура реальности: Наука параллельных вселенных
Дэвид Дойч
Вселенная в вопросах и ответах: Задачи и тесты по астрономии и космонавтике
Владимир Сурдин
Шесть невозможностей: Загадки квантового мира
Джон Гриббин