Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей — страница 3 из 19

Танец с небесами

Маршрут:От Земли к Луне и обратно. – Центр масс. – Кто за рулем. – Космические парковки XVIII века. – Гало-орбиты. – Греки и троянцы. – Полет из пращи. – Где прибавить ходу. – Рандеву. – Танец с небесами.

Главный герой:Майкл Коллинз

От Земли к Луне и обратно. Прекрасные в своем совершенстве кеплерово-ньютоновы эллипсы могут навевать скуку – ведь это всего лишь эллипсы. В действительности же движение в космосе в бесконечное число раз разнообразнее. Дело просто в том, что математическая задача, которую решил Ньютон, была задачей про одну планету, притягиваемую Солнцем; в качестве траекторий действительно получились только эллипсы[25]. Однако планет у Солнца в действительности несколько, еще больше – их лун (спутников), а закон гравитации, как Ньютон же его и придумал, универсальный: все притягивается ко всему. При наличии многих тел задача сразу меняется, а движение оказывается практически бесконечно разнообразным. Правда, математические трудности на пути точного решения задачи многих тел, притягивающих друг друга, непреодолимы – во времена Ньютона, в общем, в той же мере, что и сейчас. Проблема, конечно, в том, что каждое тело движется в зависимости от того, как оно притягивается к другим, а это притяжение зависит от того, какое тело где находится. Записать уравнения движения – легче легкого, а вот решить их в обозримом виде (т. е. в виде небольшого числа формул, из которых «виден ответ») невозможно. Оказываемся ли мы снова беспомощными перед лицом Вселенной, желая на основе законов движения предсказать, куда и с какой скоростью что-то полетит? И да и нет.

Движение под действием двух центров притяжения – предмет существенного интереса с точки зрения путешествия с Земли на Луну. Масса космического корабля настолько незначительна по сравнению с массой обоих тел, что не оказывает влияния на их орбиты; зато движущиеся друг относительно друга Земля и Луна влияют на космический корабль так, что его реальная орбита может оказаться где-то в интервале от «слегка некеплеровой» до «совершенно некеплеровой». И в этой задаче нельзя действовать так, как действовал Кеплер: попытаться сразу сказать, какой же траектории будет следовать корабль. Да и Ньютону было бы не под силу коротко определить эту траекторию: для нее нет не только понятного названия типа «эллипс», но и единой формулы, которая полностью и точно описывала бы ее в одну или хотя бы в несколько строк. Ньютон, правда, вовсе не занимался расчетами полетов космических кораблей к Луне – хотя, кто знает, если бы эта задача была поставлена перед ним королем (как она была поставлена советским руководством перед М. В. Келдышем в конце 1950-х), он мог бы этим загореться и посвящать меньше времени другим своим увлечениям и административным обязанностям (Келдыш между тем был президентом Академии наук СССР).

Точно учесть совместное влияние Земли и Луны непросто

Первой земной вещью, которую удалось отправить на Луну, предварительно проделав все необходимые вычисления (и, само собой, преодолев многие технологические сложности), была «Вторая космическая ракета», как она тогда называлась, – аппарат, задним числом переименованный в «Луну-2». «Первая космическая ракета» (в установившейся позднее терминологии – «Луна-1»), стартовавшая с территории СССР в самом начале 1959 г., промахнулась мимо Луны больше чем на три лунных радиуса из-за слишком поздней команды на выключение разгонного двигателя. Ошибки были учтены, и уже в сентябре «Луна-2» попала в цель. Расстояние от центра Земли до центра Луны – 110 с небольшим лунных диаметров; при этом Луна не стоит на месте, а движется относительно Земли со средней скоростью около 3680 км/ч. И да, притягивает космический аппарат с силой, мало существенной на большей части пути, но все возрастающей по мере приближения к Луне, – тогда как притяжение Земли ослабевает по мере удаления. Корабль/ракету при этом именно запускают, почти как шар в боулинге: траектория в основном задается тем, как сработал двигатель при старте с околоземной орбиты, а далее движение происходит под действием одного только тяготения; хорошо, когда по дороге есть возможность небольшой коррекции. Отправить людей к Луне и благополучно вернуть их обратно удалось ценой напряженных целенаправленных усилий только через девять с лишним лет после полета «Луны-2».

Первые предметы доставлены на Луну в 1959 г.

Первым (после, конечно, «Из пушки на Луну») транспортным средством, на котором люди отправились к Луне, был «Аполлон-8» в конце декабря 1968 г. Задача состояла в том, чтобы туда добраться (преодолев примерно 384 000 км), выйти на орбиту вокруг Луны, а затем, наоборот, уйти с нее и вернуться домой. За словами «выйти» и «уйти», как и «добраться» и «вернуться», стоят концентрированные смыслы и сложные технологические решения. Когда три ступени ракеты «Сатурн V» вывели «Аполлон-8» (вместе с третьей ступенью, которой предстояло еще поработать) на низкую околоземную, почти круговую орбиту, все системы корабля были проверены на предмет дальнейшего путешествия к Луне. Действия, необходимые для перехода на курс к Луне, надлежало выполнить в строго определенном месте траектории, которое на рис. 2.1 обозначено буквами TLI, что означает Trans Lunar Injection («переход на траекторию полета к Луне»). Сама «инъекция» состояла в точно дозированном включении двигателя третьей ступени при строго определенной ориентации корабля.


Рис. 2.1. Схема полета «Аполлона-8» к Луне. Размеры Земли и Луны указаны не в масштабе, соответствующем расстоянию между ними. Расстояние от центра Земли до центра Луны примерно в 30 раз превышает диаметр Земли и в 110 раз – диаметр Луны (а Земля «шире» Луны в 3,7 раза). Большой эллипс в действительности вытянут гораздо сильнее


За некоторое время перед этим из центра управления должна была поступить разрешающая команда. На связи с астронавтами был Майкл Коллинз, который в момент времени T + 002:27:22 (т. е. через 2 часа 27 минут и 22 секунды после старта) произнес: «Отлично, "Аполлон-8", есть готовность к переходу на траекторию к Луне, конец связи» (All right, Apollo 8. You are go for TLI, over). Это довольно техническая, сухая фраза, которую он к тому же многократно тренировался произносить (не ради улучшения своей дикции, а как часть тренировки в центре управления, где систематически моделировались всевозможные неисправности и отрабатывались действия по их диагностике и преодолению). Но она произвела на Коллинза впечатление, сравнимое с впечатлением от его собственного полета к Луне семь месяцев спустя:

И вот наступил серьезный момент. Пока мы вели обратный отсчет до включения двигателя [третьей ступени], чтобы выполнить TLI, безмолвие охватило центр управления. Из-за TLI этот полет отличался от предшествовавших ему шести полетов проекта «Меркурий», десяти «Джемини» и одного «Аполлона», отличался от любого путешествия, когда-либо предпринимавшегося людьми на каком бы то ни было транспортном средстве. Впервые в истории человек собирался ускорить себя до скорости освобождения, разорвать хватку гравитационного поля Земли и, как никто никогда не делал раньше, вылететь накатом в открытый космос. После TLI в Солнечной системе должны были появиться трое людей, которых следовало учитывать отдельно от остальных миллиардов, – трое, находящихся в другом месте, движение которых подчиняется другим правилам и среду обитания которых надо считать отдельной планетой. Они могли оглядывать Землю, а Земля могла глядеть на них, и каждая из сторон видела бы другую впервые. Люди в центре управления все это понимали; но не нашлось никаких специально написанных слов, чтобы выразить этот факт. Вместо них была только тонкая зеленая линия, показывающая, как «Аполлон-8» карабкается вверх, набирает скорость и исчезает, оставляя всех нас, застрявших на этой планете, в благоговении оттого, что мы, человечество, в конце концов получили возможность выбора – улететь или не улететь – и выбрали первое.

Я слышу здесь те же мотивы, что, видимо, подсказали название «Первая космическая ракета» ее создателям. Хотя к моменту ее запуска (январь 1959 г.) в космосе уже побывало четыре искусственных спутника Земли, уход от Земли, будь то к Луне или дальше, воспринимался, вероятно, как полет в «настоящий космос».

Включение двигателя «Аполлона-8» было рассчитано так, чтобы корабль перешел на вытянутую эллиптическую орбиту. После 5 минут и 17,72 секунды работы двигателя законы Ньютона вступили в свои права без усложнений со стороны реактивной тяги: движением управляла гравитация. Луна находилась в этот момент еще в удалении от места дальнейших главных событий. Если бы ее не было вовсе, вытянутый эллипс таковым бы и остался: «Аполлон-8» прошел бы его целиком (а потом снова и снова, пока не включил бы двигатель). Однако все мероприятие было затеяно ради встречи с Луной, которая сама не стоит на месте, а движется по орбите вокруг Земли.

*****

Центр масс. Строго говоря, Луна обращается не точно вокруг Земли (а Земля, в свою очередь, – не точно вокруг Солнца), даже если понимать «обращается вокруг тела X» как «движется по эллипсу, в фокусе которого находится центр тела X».

Земля и Луна в своем взаимном движении обращаются вокруг определенной точки, которая по факту находится внутри Земли, но не совпадает с ее центром. Она называется центром масс и для двух тел одинаковой массы находится точно посередине отрезка, соединяющего эти тела; для неодинаковых тел центр масс смещен из середины в сторону более массивного тела. Для примерно сферических тел, таких как Луна, планеты и звезды, все расстояния надо вычислять до центра каждого тела. Из-за того что Земля в 81,6 раза массивнее Луны, их общий центр масс расположен близко к центру Земли – настолько близко, что оказывается внутри Земли, на расстоянии около 4600 км от центра (тогда как радиус Земли – 6378 км).

Центр вращения – центр масс

Если бы у Земли было два спутника – Луна и, скажем, Селена, то все три обращались бы вокруг общего центра масс. В зависимости от массы и удаления Селены от Земли и (меняющейся) конфигурации всей системы трех тел он вполне мог бы выходить за пределы Земли. То же самое происходит в Солнечной системе: там всё обращается вокруг общего центра масс. Из-за того что Солнце во много раз массивнее, чем все планеты, вместе взятые, центр масс находится вблизи или внутри Солнца. Поскольку планеты в разное время располагаются по разным сторонам от Солнца, положение центра масс меняется, если смотреть с Солнца. Когда две самые массивные планеты, Юпитер и Сатурн, находятся примерно на одном радиусе, проведенном от Солнца, центр масс заметно сдвигается в их сторону; но когда они расположены по противоположным сторонам, их вклады в сдвиг центра масс по отношению к центру Солнца почти компенсируют друг друга. Самый большой вклад в сдвиг центра масс от центра Солнца дает Юпитер. Центр масс системы Солнце – Юпитер находится даже не внутри, а снаружи Солнца, хотя и близко к его поверхности – на расстоянии немного меньшем, чем четыре диаметра Земли; от центра Солнца это 744 196 км. А центр масс системы Солнце – Земля сдвинут от центра Солнца всего на 450 км. Вращение Солнца вокруг центра масс Солнечной системы – если какой-то далекий наблюдатель его зафиксирует – возможность установить наличие у Солнца планет при взгляде со стороны какой-нибудь другой звезды.

*****

Кто за рулем. Пока «Аполлон-8» летит к Луне, а двигатель выключен, корабль падает – находится в состоянии свободного падения, главный признак которого – невесомость[26]. Чтобы встреча с Луной произошла как запланировано, в программу полета входила коррекция траектории этого свободного падения к Луне. Для этого надо было точно определить параметры того «большого» эллипса, которому следовал корабль после TLI, вычислить необходимую поправку, превратить ее в точное время включения и выключения двигателя и передать эти данные экипажу/бортовому компьютеру. Коррекция, проведенная почти точно через 11 часов после старта, оказалась очень незначительной: двигатель включили всего на две секунды.

На второй день полета – когда скорость корабля уменьшилась в несколько раз, как и полагается при движении по вытянутому эллипсу (что чувствовал бы Кеплер!..), – расстояние от корабля до Луны стало сокращаться, из-за чего ее притяжение постепенно вступало в силу и «большой эллипс» все заметнее переставал быть эллипсом; для успеха всего путешествия требовалось хорошо понимать, как и насколько. Математически записать точное решение для такой траектории невозможно, но человечество не сидело 250 лет после «Начал» Ньютона сложа руки, а разработало набор способов получать приближенные формулы, а за два десятилетия, предшествовавшие полету, более того, научилось поручать вычисления в каждом конкретном случае компьютеру – развив для этого специальные схемы вычислений.

Через 55 часов и 38 минут полета «Аполлон-8» оказался в точке, где притяжение Земли и притяжение Луны равны по величине. Из-за разницы масс Земли и Луны происходит это там, откуда до Луны в раз ближе, чем до Земли[27]. После этого Луна стала забирать корабль себе. Если бы притяжение Земли вдруг волшебным образом исчезло, то окололунной орбитой (как она видится наблюдателю на Луне) стала бы в точности гипербола (прилетел – отклонился – улетел), а в реальности получалось что-то вроде гиперболы, несколько испорченной влиянием Земли[28]. Но в любом случае оставаться на ней не было частью плана. Задание состояло в том, чтобы перейти на низкую, почти круговую окололунную орбиту. Для этого сначала провели небольшую промежуточную коррекцию траектории, а затем, в момент T + 068:04:07, экипаж получил одобрение на LOI (Lunar Orbit Insertion) – включение двигателя для вывода корабля на окололунную орбиту. Здесь требовалось притормозить – уменьшить скорость свободного падения мимо Луны.

Разгоняться и тормозить в открытом космосе – действия совершенно одного порядка, потому что оба выполняются путем включения двигателя, и именно время этого включения (и, разумеется, тяга двигателя в соотнесении с массой корабля) определяет изменение скорости, которое в результате получится. Не имеет никакого значения, с какой скоростью двигался космический корабль до того. Если мы с вами летим рядом параллельными курсами на двух посудинах в открытом космосе и я включаю двигатель на 10 секунд, а вы нет, то я удалюсь от вас на одно и то же расстояние независимо от того, в направлении какой звезды я пожелал двигаться. Если эта звезда у вас впереди по курсу, то вы скажете, что я разогнался, если же сзади по курсу – то затормозил[29]. Мне же и разгон, и торможение, как и уход в любую сторону с одним и тем же по величине изменением скорости, стоят одинаковых затрат топлива.

Разгон и торможение в открытом космосе – одно и то же

Однако эффект, который производит на орбиту корабля приобретение им фиксированной прибавки к скорости, зависит от степени приближения к главному на текущий момент телу – тому, вблизи которого корабль движется. Для эффективного расхода страшно дорогого топлива (дорогого, разумеется, не из-за стоимости аэрозина и окислителя как таковых, а из-за расходов по их доставке к месту использования) маневр LOI – торможение – требовалось выполнить в точке наибольшего приближения к Луне. Но эта точка орбиты располагалась за Луной, где корабль был лишен связи с Землей. Центр управления оставался в неведении относительно успеха или неуспеха маневра до момента появления корабля из-за Луны – по правильной (в случае успеха) или неправильной траектории. Двигатель включился в момент T + 069:08:20,4 и проработал 4 минуты и 6,9 секунды. В центре управления прекрасно знали, что если двигатель сработал правильно, то связь не просто восстановится, но и произойдет это в рассчитанный заранее момент. Поэтому уже само появление «Аполлона-8» в эфире в момент T + 069:33:52 говорило, что двигатель отработал штатно. Сначала корабль вышел на эллиптическую орбиту вокруг Луны, которую чуть позже «циркуляризировали» – превратили в почти круговую путем десятисекундного включения двигателя. Таким образом, преодолев около 384 000 км до Луны, «Аполлон-8» поместил себя на орбиту всего в 110 км над поверхностью этой движущейся мишени – неплохое достижение с учетом того, что за все 66 часов после TLI свободное падение прерывалось включением двигателя в общей сложности не более чем на пять минут.

Потеря и восстановление связи, по наблюдениям экипажа, происходили точно в те моменты, когда их ожидали согласно информации из центра управления. Надо ли говорить, что такое предвидение – просто еще один результат расчетов по Ньютону. Участники событий прекрасно это понимали. Описывая уже свой собственный полет к Луне, через семь месяцев после того, как дорогу туда проложили Борман (командир), Андерс и Ловелл на «Аполлоне-8», Коллинз вернулся мыслями к тому времени, когда сам он был связным между центром управления и тремя только что упомянутыми астронавтами «Аполлона-8». Текущее же время в рассказе – первый день Коллинза вместе с Армстронгом и Олдрином на «большом» эллипсе на пути к Луне; дел не очень много, а напряжение велико.

Помню, как в прошлом декабре, во время полета «Аполлона-8», мой пятилетний сын задавал один и только один, но весьма конкретный вопрос: а кто у них за рулем? Не его ли это друг мистер Борман? Как-то вечером, когда в центре управления было тихо, я переадресовал его вопрос на борт, и Билл Андерс сразу ответил, что нет, за рулем не Борман, а Исаак Ньютон. Нельзя дать более верного и более четкого описания полета между Землей и Луной. Солнце притягивает нас, Земля притягивает нас, Луна притягивает нас – точно так, как это предсказал Ньютон. Откликаясь на эти центры притяжения, наша траектория отклоняется от своих начальных направления и скорости, полученных после TLI. На данный момент продолжает доминировать притяжение Земли, но к концу завтрашнего дня ее заменит Луна, и наша скорость снова начнет увеличиваться. До того нам необходимо слегка скорректировать наш маршрут, поскольку все это время после TLI мы медленно дрейфовали в сторону. На три короткие секунды включения двигателя служебного модуля Майк Коллинз сменит за рулем сэра Исаака Ньютона. Всего-то на три секунды! Я поражаюсь точности нашего путешествия, которое не перестают сравнивать с путешествием Колумба. Насколько я помню, по мере того как его экипаж выказывал все больше нетерпения из-за того, что земля никак не появлялась, и возрастало давление, чтобы повернуть назад, Колумб вроде бы подправил корабельный журнал так, чтобы из него следовало, будто «Нинья» ушла не так уж далеко, и поэтому вполне естественно, что земля еще не появилась в виду. Попробуйте представить себе, как я подправляю наш полетный план в случае, если бы Луна оказалась дальше, чем на расстоянии трехдневного путешествия. Что бы я сообщил компьютерам в Хьюстоне?

Рис. 2.2. «Восход Земли», видимый с борта «Аполлона-8». Фотография сделана Биллом Андерсом, по настойчивой просьбе которого Джим Ловелл быстро нашел цветную пленку. Ориентация корабля оказалась благоприятной для такого вида на четвертом по счету выходе из-за Луны. Один из запечатленных на фотографиях кратеров на поверхности позднее получил название «Андерсовский восход Земли» (Anders' Earthrise)


События на лунной орбите «Аполлона-8» по-своему замечательны, но не являются здесь предметом нашего интереса (см., впрочем, рис. 2.2). Все это время драматическим вопросом было предстоящее возвращение. Для этого двигатель должен был снова включиться в точности в нужный момент, на нужное время и при нужной ориентации корабля – и снова за Луной, в период отсутствия связи с Землей. Экипаж получил рутинное напоминание о предстоящем включении двигателя, хотя этот маневр не относился к разряду «центр управления решит по обстоятельствам, выполнять или нет», – маневр Trans Earth Injection, переход на траекторию возвращения к Земле, нужно было выполнить. Двигатель должен был проработать под управлением бортового компьютера точно 3 минуты и 23,7 секунды. Полученная прибавка к скорости должна была заставить корабль уйти от Луны (перейти на гиперболическую траекторию, если говорить только о Луне) и вернуться в область доминирующего притяжения Земли. Маневр был несколько более ответственным, чем попадание на скоростном шоссе на нужную полосу, которая на следующей развязке уведет вас на запад, а не на юг. Запасного двигателя не было, как не было и никакого плана Б; никакая «Пинта» или «Санта-Мария» не пришла бы на помощь потерявшей ход «Нинье», и никакие ветра не прибили бы ее к берегу. Включение произошло в момент T + 089:19:16,6, но знали об этом только три человека, лишенные возможности с кем бы то ни было этим поделиться. В центре управления и в домах астронавтов в вынужденном полном бездействии 15 минут ждали возобновления связи и информации о том, как сработал двигатель.

*****

Космические парковки XVIII века. Один из двух последних (на момент написания книги и, боюсь, еще на какой-то период) людей на Луне, геолог Харрисон «Джек» Шмитт (первый астронавт NASA, не бывший профессиональным летчиком), одно время агитировал за посадку на обратной стороне Луны. Мы помним о невозможности радиообмена с теми, кто закрыт Луной. Для связи с кораблем пришлось бы запустить ретрансляционный спутник. Куда и как? Можно ли запустить космический аппарат так, чтобы он, не тратя или почти не тратя топлива, все время находился вблизи Луны, но не обращался бы вокруг нее (ведь иначе сам он периодически не будет видеть место посадки)?

Временно забудем про удобство радиосвязи и спросим себя: «Можно ли, не тратя топлива, летать на постоянном расстоянии от Луны, но не обращаясь вокруг нее?» Уже законы Кеплера (и, само собой, законы Ньютона) говорят, что тут есть проблема: чем больше радиус орбиты, тем больше времени занимает оборот вокруг Земли. Если запустить космический аппарат по орбите большего радиуса, чем орбита Луны, то он будет отставать от Луны; если поместить его на более близкую орбиту, то он будет убегать вперед. И в том и в другом случае получатся космические догонялки – расстояние между кораблем и Луной будет меняться с течением времени.

Оказывается тем не менее, что в околоземном пространстве есть пять орбит, по которым космические аппараты могут (или почти могут, как мы сейчас увидим) летать вокруг Земли, оставаясь неподвижными относительно Луны! Они называются точками (не орбитами, а именно точками) Лагранжа. За 185 лет до первого искусственного спутника Земли их описал Жозеф Луи Лагранж (родившийся в Турине и звавшийся от рождения Джузеппе Лодовико Лагранджиа) в своей математической статье о задаче трех тел. Три точки из этих пяти были открыты ранее Эйлером. Эти точки – все возможные ответы на поставленный выше вопрос. Вот подсказка к решению: попробуем сначала поместить космический аппарат на одну линию с Землей и Луной. Различных вариантов расположения Земли, Луны и спутника тогда три: ЗЛС, ЗСЛ и СЗЛ. Вариант ЗЛС означает, что спутник расположен на одной линии с Землей и Луной, но за Луной, если смотреть с Земли (точка L2 на рис. 2.3). При этом Луна тянет спутник точно в ту же сторону, что и Земля, и, пока спутник остается точно на линии, соединяющей Землю и Луну, ничего другого Луна для него не делает: она работает как усилитель притяжения к центру масс (который тоже находится на линии, соединяющей Землю и Луну). А по законам Ньютона более сильное притяжение означает, что спутник движется по орбите быстрее, чем если бы действовало только притяжение Земли. Это отличная идея, если только удастся двигаться ровно настолько быстрее, чтобы все время оставаться на заветной линии Земля – Луна: такое расположение будет поддерживать то самое «усиленное» притяжение к центру масс, благодаря которому спутник может лететь так быстро, чтобы все время оставаться за Луной, благодаря чему продолжать испытывать более сильное притяжение к центру масс… Эта «история про курицу и яйцо» выражается уравнениями, решение которых и нашли сначала Эйлер (1760), а потом Лагранж (1772): точка L2, где все складывается так удачно, существует! На ней и основано решение проблемы ретрансляционного спутника – с небольшим уточнением, которое будет сделано чуть ниже.


Рис. 2.3. Точки Лагранжа L1 – L5 в системе Земля – Луна


Другой интересный вариант – ЗСЛ, что означает спутник между Землей и Луной. На этот раз Земля и Луна тянут спутник в разные стороны: с точки зрения спутника это означает, что притяжение к центру масс слабее, чем если бы его притягивала одна только Земля. А это, в свою очередь, означает, что он летит по орбите выбранного радиуса медленнее, чем полетел бы в отсутствие Луны. Снова появляется надежда на успех, потому что «медленнее, чем обычно» – это как раз то, что требуется, ведь и спутник находится ближе к центру вращения, чем Луна. Мы снова ищем такую точку, где разность двух сил притяжения позволяет, находясь ближе к Земле, чем Луна, не обгонять Луну, а оставаться на линии Земля – Луна, из-за чего две силы притяжения продолжают вычитаться, из-за чего скорость движения по орбите меньше, чем если бы Луны не было, из-за чего тело все время остается на линии Земля – Луна, из-за чего оно испытывает настолько меньшую силу притяжения к центру, что движется ровно настолько медленнее, чтобы… Эта «самозацикливающаяся» фраза снова описывает уравнение. Математический факт с непосредственным приложением к космонавтике состоит в том, что решение у этого уравнения есть, и оно определяет единственную точку между Землей и Луной – точку L1 на рис. 2.3. Это – подходящее место для космической базы: прекрасные условия радиосвязи и с Землей, и с Луной плюс определенные удобства путешествия к обоим телам. Это, собственно говоря, перевалочная точка: имея целью Луну, но долетев с Земли сначала на L1, мы дополнительно потратимся на эту «остановку» очень незначительно. Поэтому отсылать, например, грузы в L1 и хранить их там до момента, когда они понадобятся на Луне, можно практически без лишних затрат топлива по сравнению с прямой доставкой, но имея при этом преимущество в логистике.

L1 – перевалочная точка

Наконец, вариант СЗЛ означает, что спутник находится с противоположной стороны от Земли, чем Луна. И Земля, и Луна притягивают его в сторону центра масс системы Земля – Луна, т. е. в сторону центра вращения; притяжение Луны при этом сказывается слабо из-за большого расстояния до нее, но все же немного добавляет к притяжению в сторону центра масс (и главное – не утягивает спутник куда-то в сторону). Опять-таки требуется решить уравнение, говорящее, что совместное притяжение Земли и Луны позволяет обращаться вокруг Земли синхронно с Луной; этим однозначно определяется расстояние от центра масс (а потому и от центра Земли). Это точка L3 на рис. 2.3. Она оказывается совсем немного дальше от центра масс (примерно в 1,017 раза дальше), чем Луна, но немного ближе к центру Земли, чем расстояние от него до Луны.

Разумеется, точки Лагранжа имеются не только в системе Земля – Луна. Неважно, как называются два массивных тела, – математика одна и та же, только относительные расстояния от центра до L1, L2 и L3 несколько различаются в зависимости от соотношения масс двух больших тел. В системе Солнце – Земля практически важны две точки Лагранжа: уже знакомая нам L2 (дом для космических телескопов, как мы очень скоро увидим) и L1 между Солнцем и Землей (рис. 2.4). Из точки L1 в системе Солнце – Земля открывается ничем не затемняемый постоянный вид на Солнце с одного и того же расстояния, и там работают приборы, которые именно в этом и нуждаются. Среди них – космическая обсерватория по наблюдению Солнца SOHO (Solar and Heliospheric Observatory Satellite). Другой аппарат, ACE (Advanced Composition Explorer), использует особенности этой точки Лагранжа, пожалуй, в еще большей мере: находясь «вверх по течению» от Земли вдоль потока солнечного ветра, он в реальном времени передает данные о магнитном поле и о потоке частиц, летящих от Солнца, что позволяет уточнять прогнозы космической погоды – влияния Солнца на околоземное пространство (магнитосферу и ионосферу). На смену этому ветерану точки L1 уже запущен аппарат DSCOVR (Deep Space Climate Observatory), по совместительству – автор известных фотографий, показывающих прохождение Луны на фоне Земли.


Рис. 2.4. Точки Лагранжа L1 – L5 в системе Солнце – Земля. Здесь изображено, по существу, то же самое, что на рис. 2.3, но для другой пары небесных тел. Луна на этом рисунке не играет никакой роли


Точка L3 в системе Солнце – Земля (см. рис. 2.4) не нашла себе практических применений (и правда, чего ради стоило бы тащиться в такую даль?), но оказалась богатой темой для фантастических нарративов разного рода; не счесть замышляющих что-то инопланетян или других заговорщиков, желающих там обосноваться. Впрочем, трудно оспорить высказывание, что если какая-то развитая цивилизация [существует и] имеет цель не просто присутствовать в Солнечной системе, но еще и пребывать на фиксированном расстоянии от Земли и если при этом они желают оставаться на своем корабле, не высаживаясь на поверхность, но не хотят тратить много топлива, – то лучшего места, чем лагранжевы точки, не найти. Но на меня производит, пожалуй, большее впечатление не предполагаемый галактический заговор, а тот факт, что к моменту начала космических полетов они (эти зеленые человечки), без сомнения, открыли бы все пять этих точек, уж не знаю, как они там у них называются.

Впрочем, мы еще не знаем, что такое точки L4 и L5, у нас открытые Лагранжем в дополнение к первым трем, известным Эйлеру. Определить их положение, когда ответ уже известен, легче легкого: измеряем расстояние от Солнца до Земли и воображаем равносторонний треугольник, одна из сторон которого как раз и соединяет Солнце и Землю (см. рис. 2.4). У равностороннего треугольника все стороны равны, поэтому расстояния от его третьей вершины до Солнца и до Земли одинаковы. Это важно! В этой вершине притяжение Солнца во столько раз сильнее, чем притяжение Земли, во сколько раз Солнце массивнее. А дальше следует несложное упражнение в геометрии: две такие силы притяжения складываются так, что в итоге тело в точке L4 испытывает суммарную силу, направленную в точности к центру масс системы Солнце – Земля, а по величине эта сила ровно такая, чтобы поддерживать обращение вокруг этого центра масс на заданном расстоянии – на том самом, которое определяется из нашего треугольника. С точкой L5 все то же самое, только если L4 опережает Землю в ее движении вокруг Солнца, то L5 отстает. Обе – на один и тот же угол в 60°.

Точки Лагранжа – это некеплеровы орбиты

Итог про точки Лагранжа: это такие положения в системе двух тел, где совместное притяжение этих тел способно поддерживать синхронное обращение малого третьего тела. Это ответ на заданный выше вопрос, но слово «точка», как мы видим, понимается тут несколько вольно: каждая из точек Лагранжа вообще-то задает орбиту, потому что вся картинка на рис. 2.4 вращается как единое целое; это буквально точка только для наблюдателя, который сам обращается вокруг общего центра масс – скажем, сидя на Земле, если мы говорим о системе Солнце – Земля. И еще я забыл сказать, что вся схема работает хорошо, когда орбиты в системе двух тел близки к круговым. И конечно, помещать на эти орбиты следует тела малой массы; такое условие означает, что притяжение этого третьего тела не должно оказывать обратного воздействия на два больших тела (Солнце и Землю в данном случае). И наконец, пояснения требует слово «поместить»: все тела, помещенные в какую-либо точку Лагранжа, должны быть разогнаны до необходимой скорости для движения по орбите, которую описывает выбранная точка Лагранжа, когда конфигурация, изображенная рис. 2.4, вращается как целое. Этого разгона совместное тяготение двух больших тел совсем никак не обеспечивает – но оно обеспечивает ровно такое притяжение к центру вращения, при котором тела, получившие подходящую скорость, могут оставаться на этой орбите.

*****

Гало-орбиты. Идея высадиться на обратной стороне Луне в начале 1970-х реализована не была, Сернан и Шмитт прилунились на «Аполлоне-17» на видимой стороне Луны и три дня ездили там на ровере; но китайский аппарат «Чанъэ-4», который в самом начале 2019 г. доставил луноход «Юйту-2» на обратную сторону Луны (рис. 2.5), вел связь через спутник «Цюэцяо», заблаговременно отправленный к той самой точке L2 системы Земля – Луна, в каких-то 64 500 км за Луной. Здесь наконец пора дать обещанное уточнение про ретрансляционный спутник. Каждый раз, когда мы слышим про космический аппарат «в точке Лагранжа», надо представлять себе что-то вроде орбиты вокруг точки Лагранжа.


Рис. 2.5. Луноход «Юйту-2» на обратной стороне Луны. И его, и Землю постоянно видит ретрансляционный спутник, находящийся вблизи точки Лагранжа L2 системы Земля – Луна


Дело в том, что с точками Лагранжа все-таки есть проблема: L1, L2 и L3 неустойчивы[30]. Карандаш может некоторое время стоять вертикально на вашем столе, но рано или поздно упадет по той или иной причине, например если вы откроете окно или из-за какой-то еще флуктуации. Для космического аппарата, помещенного в точку Лагранжа, причин для подобных флуктуаций – нарушений точного баланса положения, скорости и сил притяжения – хоть отбавляй (притяжение других тел в Солнечной системе оказывает воздействие, орбиты отличаются от круговых, скорость оказывается не идеально точной для пребывания в точке Лагранжа и т. д.). В результате аппарат начинает «сползать» – удаляться от математически определенной точки Лагранжа. Хотя события и будут развиваться намного медленнее, чем при опрокидывании карандаша, неустойчивость означает, что по мере сползания на космический аппарат действуют силы, уводящие его только дальше[31]. Поэтому начавшееся по любой причине сползание не исправится само; если там оказался астероид, то он со временем сдвинется куда-то прочь, а если мы (или инопланетяне) желаем, чтобы там оставалось какое-то устройство, то потребуются включения корректирующего двигателя. Да, некоторое количество топлива тратится, но очень небольшое – именно из-за того, что дело происходит вблизи точки равновесия с достаточно вяло проявляющей себя неустойчивостью. Космический аппарат, который время от времени заботится о своем положении, может поэтому описывать вокруг точки Лагранжа что-то вроде орбиты, но это орбита не в кеплеровском смысле, поскольку в сторону самой точки Лагранжа нет силы притяжения, а скорее контролируемый дрейф – сначала сползание в одну сторону, затем короткое включение двигателя для изменения направления движения, последующее сползание в несколько иную сторону и так далее. Китайский ретрансляционный спутник летал вокруг L2 по такой орбите, чтобы Луна не загораживала ему вид на Землю. При взгляде с Земли эта орбита проходит снаружи от лунного диска, нигде не заходя за него, – как «гало» вокруг Луны. Поэтому такие орбиты иногда называют гало-орбитами.

Вариация на тему гало-орбит предполагается и для Лунной орбитальной платформы (Lunar Gateway) – международной космической станции «вблизи» Луны, создание которой планируется при ведущей роли NASA. Станция должна находиться на вытянутой гало-орбите, «чувствительной» к наличию обеих точек Лагранжа L1 и L2, с максимальным приближением к поверхности Луны на 3000 км (что несколько меньше диаметра Луны) и максимальным удалением 70 000 км. Станция будет приближаться к Луне над ее северным полюсом, а уходить далеко – над южным, что на взгляд с Земли можно изображать как под южным: орбита «свисает вниз», почти перпендикулярно плоскости, в которой сама Луна обращается вокруг Земли, и уходя сильно ниже этой плоскости. Это одна из южных орбит в отношении Луны, южный полюс которой тоже «смотрит вниз», и в течение почти всего времени, за исключением коротких периодов прохода над северным полюсом, станция будет находиться в прямой (радио)видимости от предполагаемого места высадки на Луну вблизи ее южного полюса. Для периодических «исправлений» орбиты потребуются включения двигателя, сообщающие станции суммарное изменение скорости всего на 10 м/с за год.


Рис. 2.6. Траектория аппарата «Спектр-РГ», работающего вблизи точки Лагранжа L2 системы Солнце – Земля, данные ИПМ им. М. В. Келдыша РАН [25]


Если говорить про систему Солнце – Земля, то окрестности точки L2 оказываются идеальной «движущейся парковкой» – площадкой для астрономических наблюдений. Эта точка Лагранжа расположена на расстоянии 1,5 млн км от Земли – что в сто раз меньше расстояния от Земли до Солнца, но все же в четыре раза дальше, чем находится от нас Луна. Именно из L2 системы Солнце – Земля изучали реликтовое излучение (космический микроволновой фон) аппараты WMAP и «Планк»[32]. Относительно недавно там же поселился и «Спектр-РГ» – российско-германская астрофизическая обсерватория; аппарат, запущенный в июле 2019 г., за 100 дней добрался до окрестностей L2, а к середине апреля 2020 г. выполнил один оборот по орбите, которая проходит на расстоянии до 400 000 км от L2, перпендикулярно линии Солнце – Земля (рис. 2.6). Контроль за дрейфом в сторону от точки Лагранжа требует краткосрочных включений двигателя каждые 40–70 дней. В результате космический аппарат будет делать что-то вроде полного оборота в течение примерно полугода, поднимаясь над плоскостью земной орбиты и опускаясь под нее; траектория образует не очень аккуратный «моток» вокруг L2, мало похожий на строгий и совершенный эллипс[33].

Туда же, в окрестность точки L2 системы Солнце – Земля, в январе 2022 г. добрался преемник знаменитого космического телескопа «Хаббл» – JWST[34]. Его задачи – наблюдать самые далекие от нас объекты во Вселенной (интересные нам в первую очередь из-за эффекта «машины времени», который мы обсуждаем на прогулке 5), следить за формированием звезд и планет, а также получать прямые изображения планет (и отдельно – взрывающихся звезд). Телескоп требуется держать очень холодным, и совокупность предъявляемых требований и определила положение для его устойчивого размещения внутри «круговорота» Солнечной системы. Для него выбрана гало-орбита, проходящая на расстоянии от 250 000 до 832 000 км от точки L2. Чтобы его солнечные батареи постоянно освещались, аппарат не должен попадать в тень, отбрасываемую Землей. При этом, однако, давление солнечного света на щит, защищающий телескоп от нагревания Солнцем, становится фактором воздействия, уводящим аппарат в сторону. Телескоп будет подправлять свое положение каждые три недели. Суммарное годовое изменение скорости, которое необходимо обеспечить, включая двигатель, составит от 2 до 4 м/с. Это чепуховые поправки по сравнению со скоростью движения самой L2 вокруг Солнца, которая близка к скорости Земли в 30 000 м/с, и их малость определяется именно близостью аппарата к точке Лагранжа. То же самое верно, конечно, и в отношении аппаратов, наблюдающих за Солнцем и солнечным ветром «из точки» L1: ценой очень скромных затрат топлива они описывают вокруг этой точки Лагранжа несколько нерегулярные орбиты с характерными радиусами в несколько сотен тысяч километров.

*****

Греки и троянцы. Лагранж умер за 144 года до запуска первого искусственного спутника Земли, и не исключено, что он рассматривал пять специальных точек в системе двух тел как (всего лишь) математическое упражнение. Но нам, забравшимся на плечи гигантов, теперь видно, что интересная математика, возникающая при описании какой-либо реальной физической системы, – это почти гарантия обнаружения физического эффекта, в котором математическая достопримечательность тем или иным способом себя проявляет. И действительно, спустя более столетия после рассуждений Лагранжа астрономы начали открывать троянцев!

Если для замышляющих что-то зеленых человечков точки Лагранжа – это хорошие места для парковки, то для космических обломков и мусора точки L4 и L5 оказываются тихими закутками, где они оседают. В этих точках Лагранжа собираются астероиды, потому что там иная картина с устойчивостью, чем в трех других точках Лагранжа. С первого взгляда, правда, ситуация даже хуже, потому что баланс сил притяжения таков, что при выходе из точки Лагранжа в любом направлении возникает сила, которая побуждает уходить дальше. Но это только если смотреть на то, как работают силы притяжения. Кроме притяжения, в дело вступает движение. Сама точка Лагранжа движется по окружности, а в этом случае есть вот какая новость: при движении относительно вращающейся системы тело испытывает действие дополнительной силы[35]. Это не совсем обычная сила, потому что у нее нет физического источника, она ощущается только во вращающейся системе и связана с довольно простым обстоятельством: если вы уже стоите на вращающейся карусели-платформе, то, значит, вы приобрели ту же скорость, что и пол у вас под ногами. Но разные участки пола движутся с разными скоростями! Те, которые близко к центру, движутся медленно, а те, что у края, – быстро или очень быстро. Когда вы начнете двигаться – скажем, захотите перейти от края карусели к центру, – вы обнаружите, что, делая каждый следующий шаг, вы ставите ногу на участок пола, движущийся медленнее, чем тот, где вы только что находились. В вашем восприятии это будет выражаться в некоторой силе, действующей на вас со стороны пола и направленной поперек вашего движения. То же самое происходит в «гравитационной карусели» в окрестности (для определенности) точки L4: по мере удаления от L4 уходящее тело набирает скорость относительно этой точки Лагранжа. Но, поскольку все происходит во вращающейся системе, движущееся тело испытывает дополнительное воздействие по мере набора скорости. Результат оказывается приятным сюрпризом: баланс всех факторов в окрестности L4 таков, что при развитии сползания тело не уходит прочь, а, набрав некоторую скорость, отправляется по орбите вокруг точки L4. Все то же самое происходит и в окрестности L5. Точки L4 и L5 оказываются устойчивыми, если, как показывает математика, более массивное из двух больших тел тяжелее другого в раза или больше. Это условие выполнено для пары Земля – Луна и с большим запасом выполнено для всех пар Солнце – планета.


Рис. 2.7. Земля и Юпитер, если бы они могли оказаться рядом


Раз оказавшись вблизи L4 или L5 в системе Солнце – планета, астероиды имеют тенденцию там и оставаться. Сильнее всего этот эффект проявляется, разумеется, в самой гравитационно сильной паре тел в Солнечной системе. Это Солнце и Юпитер (который в 317 раз массивнее Земли; рис. 2.7). В точках Лагранжа L4 и L5 системы Солнце – Юпитер собралось, по оценкам, около 1 млн астероидов, превышающих 1 км в диаметре (возможно, примерно столько же, сколько их в поясе астероидов между Марсом и Юпитером). Они названы именами участников Троянской войны и даже разбиты по лагерям:


L4. Это лагерь греков. Застрявшие там астероиды носят, в частности, имена (начиная с тех, которые должны звучать хоть сколько-нибудь знакомо, если никуда не подглядывать): Ахилл, Нестор, Агамемнон, Одиссей, Аякс, Менелай, Филоктет, Неоптолем; а еще – Идоменей, Протесилай, Талфибий, Менесфей, Подалирий и многие другие. Но там же и Гектор – астероид, названный именем жителя Трои еще до того, как пробила себе дорогу идея номенклатурного разделения этих небесных тел на два враждующих лагеря, между которыми лежит треть орбиты Юпитера (больше полутора миллиардов километров).


L5. Здесь совсем другая картина – это лагерь защитников Трои. Среди прочих тут обитают Приам, Эней, Главк, Сарпедон, Лаокоон, Парис, если снова начинать со знакомо звучащих имен, а кроме того, Алкафой, Пандар, Пулидам, Ифидам, Сергест, Астеропей и еще многие. Единство защитников Илиона тоже нарушено, еще до появления коня: к ним присоединился Патрокл.


Рис. 2.8. Греки и троянцы по две стороны от Юпитера. Их разделяет расстояние, равное примерно десяти расстояниям от Земли до Солнца. Ближе к Солнцу, внутри орбиты Юпитера находится главный пояс астероидов


Гектор и Патрокл. Пребывание Гектора и Патрокла в «чужих» станах в парадоксальном смысле логично: именно Гектор убил Патрокла («Нет великого Патрокла! Жив презрительный Терсит!»), и только поэтому Ахилл вернулся на поле боя – где и сразил Гектора[36].


Разумеется, ни греки, ни троянцы не сосредоточены все в одной точке, а занимают некоторый участок вдоль траектории Юпитера. Происходит все это довольно далеко от Земли (рис. 2.8), поэтому открыты они были совсем не сразу. Слово «троянцы» используют также в отношении астероидов, скапливающихся вблизи точек L4 и L5 других пар Солнце – планета; поскольку Солнце – это всегда Солнце, говорят просто о троянцах, например, Нептуна или Сатурна. Слово относится и к опережающим, и к отстающим; одного эпизода Троянской войны на Солнечную систему достаточно.

*****

Полет из пращи. Путешествия к астероидам и планетам – это относительно далекие путешествия, оказывающиеся долгими при доступных нам скоростях. Разогнаться быстрее нелегко: топлива хватает только на что-то вроде TLI – единовременный разгон при старте с околоземной орбиты; хорошо, если потом остается еще немного на маневры. Дефицит топлива определяется трудностью его доставки к месту использования. Реактивная тяга основана на том, что, выбрасывая что-то «назад», реактивный аппарат движется «вперед»; здесь важна скорость, с которой некоторый «агент» выбрасывается назад (в подавляющем большинстве реально существующих реактивных двигателей это горячий газ). Реактивный аппарат несет с собой источник энергии для этого «выбрасывания» – в современных ракетах это горючее (например, керосин или метан) и окислитель. Их соединение обеспечивает горение, при котором и выделяется энергия. И вот здесь скрыт ключевой момент: необходимость с самого старта нести с собой все топливо (горючее и окислитель), в том числе и тот запас, который понадобится на более поздних этапах полета. Не только «полезную нагрузку», но и это топливо необходимо разогнать на более ранних этапах движения, а для этого разгона требуется дополнительное топливо, которое, в свою очередь, необходимо разогнать, для чего нужно еще сколько-то топлива, и так далее. Это удручающее положение дел математически выражается формулой Циолковского – соотношением, которое на основе законов движения Ньютона говорит, какой должна быть стартовая масса ракеты, чтобы разогнать желаемую «полезную» массу до заданной скорости, выбрасывая продукты горения с заданной скоростью относительно ракеты. Удручающим здесь является характер этой зависимости: увеличение конечной скорости достигается колоссальным увеличением массы ракеты – т. е. количества топлива – при старте.

Формула Циолковского не очень оптимистична

Но пока наши топливные возможности существенно ограничены, в дальнем путешествии можно заметно увеличить скорость, отобрав совсем ничтожную часть количества движения у встреченной по дороге планеты. Для этого действия иногда употребляют звучное название «гравитационная праща» (есть и более технический термин: «гравитационный маневр»). Это остроумный способ извлечения пользы – разгона или, когда это нужно, торможения – из совместной игры гравитации и движения[37]. Первым космическим аппаратом, исполнившим гравитационную пращу, была «Луна-3», полетевшая в космос в 1959 г. как «Автоматическая межпланетная станция». Она не только впервые выполнила этот маневр, но и впервые сфотографировала обратную сторону Луны, что вызвало колоссальный интерес и было огромным достижением, несмотря на никудышное по современным стандартам качество успешно присланных 17 (из 29 сделанных) фотографий. Пытаясь представить себе ощущение чуда от первого за всю историю человечества взгляда на то, чего увидеть «нельзя», я думаю, что качество фотографий было не самым главным в общественном восприятии этого события. (Первыми же людьми, посмотревшими на обратную сторону Луны своими глазами, был экипаж «Аполлона-8».) Луна направила станцию обратно к Земле, а из-за движения самой Луны при встрече изменилась плоскость орбиты станции: она повернулась примерно вокруг линии Земля – Луна, проведенной в момент облета Луны (рис. 2.9). «Луна-3» ушла от Луны таким образом, чтобы при возвращении к Земле пролететь над Северным полушарием и передать фотографии на станции связи на территории СССР (что оказалось непросто из-за слабости сигнала). Она вообще не имела маршевого двигателя, и весь этот полет требовалось рассчитать заранее (расчетами по Ньютону занималась команда под руководством Келдыша).


Рис. 2.9. «Луна-3», Земля и Луна. Гравитационный маневр


С тех пор гравитационный маневр применяли множество раз. «Вояджер-1», запущенный в 1977 г. (на 16 дней позже «Вояджера-2»), получил прибавку к скорости, позволяющую ему сейчас, когда вы это читаете, покидать пределы Солнечной системы с рекордной скоростью – около 61 000 км/ч, приобретенной в основном у Юпитера и Сатурна (рис. 2.10). В пересчете на космические масштабы это около 3,6 а.е./год. Без помощи планет «Вояджеры» не пролетели бы и полпути до своих положений на настоящий момент. 25 августа 2012 г. «Вояджер-1» стал первым искусственным аппаратом, вышедшим в межзвездное пространство, если проводить границу там, где попутный солнечный ветер наконец оказывается слабее встречного галактического ветра. Потребуются тем не менее еще сотни лет, чтобы он достиг расстояний, на которые уходят от Солнца наиболее далекие из идентифицированных тел Солнечной системы, такие как 2013 SY99, Лелеакухонуа (первоначально известная как Гоблин) и 2014 FE72.


Рис. 2.10. Большие планеты изменяют траектории «Вояджеров», ускоряя их при этом. Засечками показаны точки траектории, в которых «Вояджеры» и планеты находились в определенные даты каждый год


Главное действующее лицо в истории про гравитационную пращу – гипербола (см. главу «прогулка 1»). Представим себе, что космический аппарат – скажем, запущенный с Земли – подлетает к Юпитеру достаточно быстро, со скоростью, которая не позволит Юпитеру оставить этот аппарат в зоне своего притяжения. Если временно забыть про притяжение Солнца, а кроме того, смотреть на происходящее, сидя на Юпитере, то картина хорошо известна: космический корабль приходит издалека по ветви гиперболы, отклоняется и уходит прочь. Приходящая и уходящая ветви гиперболы симметричны, и даже скорость движения при прощании с Юпитером такая же по величине, как скорость при сближении с Юпитером на том же расстоянии от него. Но это если смотреть с Юпитера! А если смотреть с Солнца, то движется не только сам аппарат, но и Юпитер, и скорость их сближения – это результат несложного математического действия со скоростями каждого. В начале всего эпизода мы пересчитываем скорость аппарата относительно Солнца в скорость сближения с Юпитером. В конце эпизода мы выполняем обратное действие: скорость удаления от Юпитера пересчитываем в скорость аппарата относительно Солнца. Казалось бы, это два взаимно противоположных действия: сколько сначала добавили, столько потом и вычли? Нет! Суть дела в том, что корабль повернул вокруг планеты: его скорость изменила направление. Поэтому скорость Юпитера, учитываемая на входе, и она же, учитываемая на выходе, не сокращают друг друга. Направлениями можно распорядиться так, что относительно Солнца корабль ускорится в результате пролета мимо Юпитера. В этом и состоит идея гравитационной пращи. Чуда в том, что корабль ускорился, «просто» пройдя мимо планеты, нет: дополнительная энергия движения относительно Солнца получена из энергии движения Юпитера; а сам он такого комариного укуса вообще не заметит (в расчетах с любой точностью можно считать, что скорость Юпитера не изменяется). Совсем наглядно происходящее видно из рис. 2.11, где, впрочем, ради этой наглядности пришлось кое-чем пожертвовать. Там предполагается, что космический корабль поворачивает вокруг планеты на 180°, чего не случается при движении по гиперболе: ее ветви расходятся все-таки под некоторым углом и никогда не бывают параллельными. Об изображенном на рисунке можно думать как о случае, к которому можно приблизиться, выбирая все более экстремальные гиперболы. Зато там все совсем просто со скоростями. Скорость корабля относительно Солнца v, а скорость планеты ему навстречу U, а тогда скорость сближения (скорость относительно Юпитера) равна v + U; после поворота на 180° она осталась численно равной v + U, но направлена в противоположную сторону – и это по-прежнему скорость относительно Юпитера. Однако теперь, после разворота корабля, Юпитер «несет» его по своей орбите, где сам имеет скорость U. Относительно Солнца скорость корабля получается равной v + U + U = v + 2U. Как видим, корабль приобрел две скорости Юпитера – как будто Юпитер был упругой стенкой, от которой корабль отразился, как теннисный мяч от приближающегося поезда. На реальных траекториях выигрыш меньше, да и к направлению вылетания из «пращи» надо относиться внимательно, если не все равно, куда потом лететь, но идея работает.

Гравитационная праща – обмен энергией движения с планетой

Аппарат «Кассини»[38], имевший целью работу на орбите Сатурна, был слишком тяжел, чтобы любая из имевшихся ракет-носителей могла отправить его сразу к цели. Стартовав в октябре 1997 г., «Кассини» сначала направился к Венере. Там в апреле 1998-го он получил прибавку в целых 7 км/с к скорости. В декабре того же года привезенное с собой топливо частично пошло на полуторачасовое включение двигателя для торможения на 450 м/с, что позволило аппарату в июне 1999-го второй раз пройти вблизи Венеры, которая направила его к Земле! Уже в августе 1999 г. родная планета встретила своего ускорившегося сына, подарив ему еще 5,5 км/с. С ними «Кассини» и отправился во внешнюю часть Солнечной системы, где сначала прошел мимо Юпитера, который еще немного «подтолкнул» его к цели, а 1 июля 2004 г. наконец вышел на орбиту Сатурна. (Дальнейшие приключения в ходе этой сверхуспешной миссии включали в себя посадку аппарата «Гюйгенс» на Титане, рискованные прохождения между кольцами и эпическое погружение вглубь планеты-гиганта 15 сентября 2017 г.)


Рис. 2.11. Предельный (нереальный, но наглядный) случай гравитационной пращи. Нереальность состоит в предположении, что космический корабль разворачивается вокруг планеты на 180°, тогда как гиперболические траектории позволяют развернуться только на угол, меньший 180°. В изображенном предельном случае космический корабль приобретает две скорости планеты, как если бы он упруго отразился от движущейся стенки


Распоряжаясь направлениями при исполнении гравитационной пращи, можно и уменьшить скорость аппарата относительно Солнца. Это тоже бывает нужно, например, чтобы запустить космический аппарат к Меркурию или «прямо на Солнце». Сделать это с Земли крайне непросто из-за скорости, с которой планета движется по орбите вокруг Солнца; эту скорость надо каким-то образом погасить, и один из способов – «праща наоборот» (в этом случае более сдержанно говорят о «гравитационном маневре») у Венеры. Правда, одного захода может не хватить, а это сильно удлиняет путешествие. Аппарат «Солар орбитер», запущенный к Солнцу Европейским космическим агентством 10 февраля 2020 г., будет двигаться к расчетной орбите вокруг Солнца около трех с половиной лет, совершая один за другим гравитационные маневры у Венеры и Земли (а затем Венера поработает еще и для того, чтобы наклонить плоскость его орбиты с целью лучшего обзора полюсов Солнца). И кроме того, гравитационный маневр около Земли выполняется в фильме «Марсианин».

*****

Рис. 2.12. Долгая дорога аппарата «Чандраян-1» к Луне: удлиняющиеся эллипсы


Где прибавить ходу. В последнее время к Луне часто летают «более долгой дорогой», экономя при этом самый дорогой ресурс – топливо (или, что то же самое, достигая большей скорости при заданном расходе топлива). Сочетание законов движения и гравитации предоставляет такую возможность при условии, что вы добираетесь до Луны постепенно, по траектории, представляющей собой букет из нескольких все более вытянутых эллипсов. Вместо одного TLI – включения двигателя на достаточное время, чтобы забросить корабль на траекторию полета к Луне, – корабль сначала, после недолгого включения двигателя, переходит на эллипс, вытянутый еще не сильно, и делает по нему полный оборот. В точке наибольшего приближения к Земле двигатель ненадолго включается снова, и корабль переходит на более вытянутый эллипс, снова делает полный оборот и снова включает двигатель вблизи Земли и так далее. Так, например, летала китайская миссия в 2007 г., индийская в 2008-м и израильская в 2019-м – все беспилотные. Экономия топлива по сравнению с «классическим» TLI требует времени на вычерчивание всех промежуточных эллипсов, что делает такой маршрут непригодным для пилотируемых полетов, поскольку экипажу в течение всего этого времени требуются кислород, вода, пища и тепло, а главное – многовитковая траектория многократно пересекает радиационные пояса Земли. В конце октября – начале ноября 2008 г. индийский аппарат «Чандраян-1» примерно за две недели перешел с орбиты с максимальным удалением от Земли 22 860 км на орбиту с максимальным удалением 380 000 км, включая для этого двигатель несколько раз, когда возвращался в точку наибольшего сближения с Землей (рис. 2.12). По итогам первого включения на 18 минут аппарат перешел на эллипс с максимальным удалением, которое оказалось на 15 040 км больше, чем у его орбиты до включения двигателя; при следующем сближении с Землей двигатель включили на 16 минут, что добавило к максимальному удалению на новом витке заметно больше – 36 815 км; но затем 9,5 минуты работы двигателя принесли целых 89 885 км, после чего всего 3 минуты подняли орбиту еще на 102 400 км, и, наконец, 2,5 минуты включения – еще на 113 000 км. Если «эффективность одной минуты включения» грубо измерять в терминах прибавки к максимальному удалению от Земли на витке «нового» эллипса, то эта эффективность растет с каждой следующей попыткой: от 15 040/18 = 836 до 113 000/2,5 = 45 200 км удаления на минуту работы двигателя. Цифры эти надо воспринимать лишь ориентировочно, потому что притяжение Земли слабеет с расстоянием и подняться с 207 000 до 307 000 км проще, чем с 7000 до 107 000; кроме того, при каждом следующем запуске двигателя ракета оказывается легче, а потому сильнее разгоняется при той же тяге. Но, как бы то ни было, тенденция ясна. Называется это явление эффектом Оберта, а сам маневр, состоящий в том, чтобы нырнуть к планете и включить двигатель в момент наибольшего сближения, – маневром Оберта. Выглядит все это с первого взгляда чуть подозрительно, потому что один и тот же двигатель, работающий одно и то же время, дает, конечно, одну и ту же прибавку к скорости – неважно, с какой скоростью двигался космический корабль перед включением двигателя, и вне зависимости от наличия или отсутствия планеты поблизости. Чтобы понять, откуда все же берется выигрыш, который хорошо виден на примере маневров «Чандраяна-1», надо сначала ясно выразить, в чем этот выигрыш.

Это выигрыш в энергии. Когда какой-нибудь снаряд запущен прочь от Земли, им ежесекундно управляет, да, сэр Исаак Ньютон посредством законов движения. Но сэр Исаак не возражает и против замечательно экономного способа сравнивать два разных состояния движущегося тела. Этот экономный способ состоит в учете энергии – которая всегда сохраняется. Правда, если работает двигатель, то надо учитывать энергию, выделяемую при сгорании топлива, а также отдаваемую выброшенным газам. Но мы обойдемся без этого, потому что будем смотреть на ракету в два ключевых момента времени: сразу после выключения двигателя на участке сближения с Землей и в точке наибольшего удаления от Земли. Вблизи Земли больше скорость, а потому больше энергия движения; а вдали от Земли скорость меньше, энергия движения меньше, зато больше энергия в поле притяжения. Сумма двух видов энергии одна и та же, но их вклады различны: вклад энергии движения велик сразу после разгона и делается заметно меньше (в характерных примерах – в значительное число раз меньше) в точке максимального удаления. Всю убыль энергии движения компенсирует увеличение энергии в поле притяжения. Итог: максимальное удаление чувствительно к тому, какую энергию имела ракета сразу после разгона. И вот здесь происходит то, чего совсем не наблюдается для привычных нам транспортных средств. Да, включение стандартного двигателя на некоторое стандартное время дает одну и ту же прибавку к скорости Δv («дельта вэ»). Но прибавка к энергии движения зависит и от этой Δv, и от скорости перед включением! Разгон на одну и ту же Δv сообщает космическому кораблю тем больше энергии, чем с большей скорости этот разгон начинается. А как мы только что видели, бóльшая прибавка к энергии движения на малом расстоянии от Земли позволит «забраться повыше» – оказаться дальше от Земли в самой удаленной части эллипса. Поэтому получение одной и той же прибавки к скорости закидывает прочь от Земли тем эффективнее, чем больше была скорость в момент включения двигателя.

Ускоряться на орбите выгодно там, где и так быстро

Маневр Оберта – это, в двух словах, нырок к планете для того, чтобы энергия движения ракеты была максимальной прямо перед выделением химической энергии от сгорания топлива и последующим перераспределением энергии между ракетой, несущей меньше топлива, и сгоревшим топливом, выброшенным назад. Мне почему-то не приходит на ум ни один фантастический фильм, где герои, которых ничто уже, казалось бы, не может спасти, внезапно вспоминают про эффект Оберта и благодаря рискованному (!) сближению с планетой в конце концов достигают такой далекой орбиты, где главный негодяй пребывает в полной беспечности. Возможно, проблема в том, насколько трудно вложить в уста «чудака-умника» такое объяснение этого эффекта, чтобы в режиме реального времени суть дела уловили не только другие хорошие парни, но и зрители (или я невнимательно смотрел «Звездный путь», он же Star Trek)[39].

*****

Рандеву. Едва ли у Кеплера было даже подобие причины задумываться о том, как перебраться с одного эллипса на другой. Открытые им орбиты планет должны были выглядеть уникальными (к чему мы еще вернемся) и никак не располагающими к самой постановке вопроса о «переходе с эллипса на эллипс». Но задача сближения космических кораблей не просто «располагает», а требует понимания таких маневров – и здесь обнаруживается кое-что неожиданное. Если, для начала, вы летите на своем корабле позади моего по той же самой – да еще и круговой – орбите, то что вы будете делать, желая догнать меня? Включите двигатель, чтобы ускориться? Если бы мы летели не по орбите, а по прямой на удалении от притягивающих масс, то двигатель добавил бы энергии движения вашему кораблю, а это значит, что возросла бы скорость и ваш маневр по сближению оказался бы успешным. Но законы движения в поле притяжения таковы, что поддерживают определенный баланс между энергией движения и энергией в поле притяжения. После включения двигателя энергия, получаемая от сгорания топлива, перераспределяется между этими двумя видами энергии. Перераспределение произойдет таким образом, что ваш корабль окажется на более высокой орбите. Но высокая орбита – это более медленная орбита, и, оказавшись там, вы будете все сильнее отставать от моего корабля, несмотря на то что пытались меня догнать. В результате закачки энергии, казалось бы, в движение вашего корабля энергия движения стала даже меньше; вся прибавка к энергии досталась энергии в поле притяжения[40]. Правильный способ действий состоит в том, чтобы включить двигатель против движения – уменьшить полную энергию, что приведет к переходу на более низкую орбиту, движение по которой «со времен Кеплера» (один из его законов!) происходит с большей скоростью. Несмотря на уменьшение полной энергии, баланс изменился так, что за счет уменьшения энергии в поле притяжения энергия движения возросла, а потому возросла и скорость – вы станете меня догонять, двигаясь по более низкой орбите. Там вам предстоит провести некоторое время, чтобы обогнать меня по угловой координате, после чего вы сможете начать маневр по переходу обратно на мою орбиту. Парадоксальное проявление эффекта «торможение вызывает увеличение скорости» – контакт космического аппарата на низкой круговой орбите с верхними слоями атмосферы. Трение об атмосферу забирает энергию у аппарата, из-за чего его скорость увеличивается, а сам он переходит на более низкую орбиту, где атмосфера плотнее, трение более сильное, космический аппарат ныряет еще глубже – и быстро распадается и сгорает в атмосфере.

Сближение на орбите (и последующая стыковка) – неотъемлемый элемент современной космонавтики. Теоретически Ньютон рулит здесь последние 300 лет и будет рулить и дальше: из закона движения он без труда вывел бы точное поведение космических кораблей при маневрах, которые начали выполнять в середине 1960-х. Но практически научиться этому в условиях постоянного дефицита топлива оказалось не так просто. В августе 1962 г. корабли «Восток-3» и «Восток-4» приблизились друг к другу на шесть с половиной километров, но не за счет орбитальных маневров, а благодаря сверхточному выведению на близкие орбиты; основные же сложности по тесному сближению оставались впереди. Два корабля по-настоящему сблизились (до 30 см) только в декабре 1965 г.; это были «Джемини-7» и «Джемини-6А», а предыдущая попытка в июне того же года, по сближению «Джемини-4» и отработавшей ступени ракеты-носителя, не удалась по ряду причин, включая как раз особенности орбитальной механики. Вслед за этим стало возможным завершать сближение стыковкой – сначала с непилотируемыми аппаратами, а в январе 1969 г. сблизились и состыковались два пилотируемых корабля, «Союз-4» и «Союз-5». Сближения и стыковки стали ключевой частью схемы высадки на Луну и возвращения на Землю: они происходили во всех полетах кораблей «Аполлон» после восьмого (кроме тринадцатого) – начиная с марта 1969 г., когда эта техника была сначала отработана на околоземной орбите. Базз Олдрин – второй человек, ступивший на Луну, – защитил диссертацию по теме стыковки. (И, как отмечали некоторые его коллеги-астронавты, едва мог поддерживать беседу на какую-либо другую тему; его прозвали «мистер Рандеву», по английскому слову для сближения в космосе.)

Один из огорчительных факторов на орбите – практически полная невозможность поворачивать. Ракета, летящая по низкой околоземной орбите со скоростью около 8 км/с (28 800 км/ч), разогналась до этой скорости почти наверняка благодаря работе двух ступеней ракеты-носителя, изначально полностью залитых топливом и все это топливо потративших для достижения этой цели. Увы, поворот, например, на 60° требует практически такого же количества топлива – которое взять решительно неоткуда (и которое вообще не доставить на орбиту теми двумя ступенями). Поэтому для сближения и стыковки орбиты двух кораблей должны лежать как можно более точно в одной плоскости. Это обстоятельство определяло серьезные требования к схеме возвращения с Луны. После взлета лунного модуля с лунной поверхности требовалась его стыковка с командным модулем, который обращался вокруг Луны, и было критически важно, чтобы их орбиты лежали в одной плоскости. Если бы орбита лунного модуля оказалась выше или ниже расчетной, средства справиться с этим имелись, но не в случае существенного рассогласования плоскостей. Впрочем, найти друг друга даже в пределах одной плоскости на орбите длиной более 11 000 км – тоже довольно содержательная задача. Стандартный экономный способ перехода между орбитами, лежащими в одной плоскости, но разделенными некоторым радиальным расстоянием, – гомановские (Hohmann) траектории, эллипсы, касательные к двум орбитам (рис. 2.13). Маневр требует двух включений двигателя для изменения скорости: для приобретения Δv в начале и еще раз в конце маневра. Эта схема придумана на удивление давно – хоть и не во времена Ньютона, когда вопрос о включениях двигателя звучал бы не совсем понятно, но определенно в докосмическую эру (см. [80]). Армстронг и Олдрин, стартовавшие с Луны в лунном модуле, сначала выходили на круговую орбиту. После корректировки легких неточностей в совмещении плоскости двух орбит (примерно по завершении одного оборота вокруг Луны) включение двигателя переводило лунный модуль на слабо эллиптическую орбиту, приближавшую его к орбите командного модуля. После еще двух коррекций лунный модуль оказывался ниже и впереди командного модуля, и ему оставалось только ускориться, чтобы перейти на более высокую орбиту и позволить командному модулю догнать себя. Пилот командного модуля Коллинз, по его собственным словам, пребывал в постоянной готовности, все время прокручивая в голове, какое «зеркальное» действие (притормозить и догнать лунный модуль на более низкой орбите) потребуется сейчас от него, если по каким-то причинам лунный модуль перестанет маневрировать. Начиная с «Аполлона-14» возросшая уверенность в надежной работе систем лунного модуля позволила заметно «спрямить» процедуру сближения[41]. С тех пор сближение и стыковка (правда, на околоземной орбите) стали в целом достаточно рутинным, хотя и ответственным маневром при каждом полете к любой космической станции (сейчас – МКС).


Рис. 2.13. Гомановская траектория – половина эллипса, соединяющего две круговые орбиты разного радиуса. Переход с одной орбиты на другую требует двух включений двигателя


Рис. 2.14. Штернфельдова (биэллиптическая) траектория перехода между двумя орбитами требует трех включений двигателя, последнее из которых – для торможения. Если радиусы двух круговых орбит различаются в несколько раз (не как показано на рисунке), то такая траектория может быть экономнее гомановской в зависимости от того, насколько большим выбрано максимальное удаление в ходе маневра


Такие же гомановские переходные траектории «соединяют» орбиты Земли и Марса. Именно такой дорогой до Марса добрался и марсоход «Персевиранс», совершивший посадку 18 февраля 2021 г. На девять и восемь дней раньше до Марса долетели аппараты «Аль-Амаль» и «Тяньвэнь-1», но они, включив двигатели, поместили себя на орбиту Марса (подобно тому, как «Аполлоны» выполняли LOI для выхода на орбиту Луны). В отличие от них, «Персевиранс» с ходу вошел в разреженную марсианскую атмосферу и перешел к посадке; от этого маневра требовалась высокая точность, для чего предварительно были сделаны необходимые коррекции траектории с целью оптимального «контакта» с Марсом. Чего, пожалуй, не следует делать в межорбитальных маневрах – это доверять земной интуиции. Например, при большом радиальном расстоянии между двумя орбитами сэкономить топливо позволит другой маршрут, несмотря на требуемые для него три включения двигателя, – маршрут по половинкам двух эллипсов, выходящих довольно далеко за более высокую орбиту (рис. 2.14); такой маневр позволяет обойтись меньшим полным значением Δv, но занимает большее время; и он тоже был придуман задолго до того, как мог стать реальностью (см. [101]). Переход через удаленную точку дает также несколько более экономный способ изменить плоскость орбиты.

*****

Танец с небесами. «Аполлон-8» все-таки не совсем разорвал хватку земного тяготения: не было необходимости разгонять его до такой скорости, чтобы он в принципе смог стать спутником Солнца[42]. Коллинз допустил художественную вольность, чтобы передать свои чувства. В том, что это именно так, едва ли стоит сомневаться в отношении человека, в обязанности которого входили ключевые маневры, включая умение довести «Аполлон-11» от Луны до входа в земную атмосферу под нужным углом в том случае, если по каким-то причинам будет потеряна связь с центром управления. В одном интервью, данном в уже очень почтенном возрасте, Коллинз сетовал, что в NASA наловчились превращать все высказывания в рутинные, и именно так в его устах звучала фраза «Есть готовность к переходу на траекторию к Луне», обращенная к экипажу «Аполлона-8». А потом глаза его загорелись, и он сказал:

Мне бы так хотелось снова пережить этот момент, потому что тогда я бы крикнул им: «"Аполлон-8", покинь мрачный плен Земли и танцуй с небесами. "Аполлон-8", вперед, танцуй с небесами!»

По-видимому, каждый американский военный летчик тех лет знал стихотворение 19-летнего пилота Джона Гиллеспи Мэги-мл., служившего в Военно-воздушных силах Канады и погибшего в декабре 1941 г. Это стихотворение летчика, но начинается оно так:

Покинув мрачный плен Земли,

Я с небом танцевал на крыльях радости,

Взбираясь к Солнцу…

(Oh! I have slipped the surly bonds of Earth

And danced the skies on laughter-silvered wings;

Sunward I've climbed…)

Добавления к прогулке 2

Легко ли прицелиться в Луну. Аналогия с боулингом, вскользь упомянутая ранее в главе, не очень корректна (как и большинство аналогий), в первую очередь из-за того, что на движение шара в боулинге влияют силы сопротивления / трения, а на космический корабль, летящий от Земли к Луне, – постепенно слабеющее притяжение Земли и (ближе к финальной части пути) возрастающее притяжение Луны, которая к тому же движется. Из-за всего этого скорость корабля непостоянна – она заметно уменьшается до момента попадания в окрестности Луны, после чего несколько увеличивается. Тем не менее я хочу продолжить эту аналогию с целью передать масштаб (который, как я уже говорил, совсем не выдержан на рис. 2.1). Я собираюсь уменьшить все расстояния в 10 000 раз – разумеется, выполняя вычисления довольно приближенно, – и посмотреть на то, что получится, как если бы это был боулинг.

Итак, у вас в руке маленький шар для боулинга (если – что не так важно – размер космического корабля тоже делить на 10 000, то диаметр шара будет порядка миллиметра, но вполне можно представлять себе что-то более приближенное к реалиям боулинга). Вы отпускаете шар от себя со скоростью 1 м/ с. Мишень, в которую шар(ик) должен попасть, движется, причем в десять раз медленнее – со скоростью всего 10 см / с. Мишень вроде бы большая – это шар (или диск, как вы его видите) радиусом 170 м, но попасть именно в него ни в коем случае нельзя, потому что это означало бы жестко разбиться (задача для «Луны-1», решенная затем «Луной-2»). Требуется послать ваш маленький шар так, чтобы он оказался на расстоянии 10 метров от края мишени, с точностью, скажем, до одного метра. Все бы ничего, но расстояние до мишени – 38 километров.

Реальная Луна еще и притягивает к себе. Определенно необходим сэр Исаак Ньютон за рулем.

Еще о космическом музее будущего. В продолжение темы о телескопе «Кеплер»: кандидат в музей искусственных гелиоцентрических объектов – первый искусственный спутник Солнца. Это станция «Луна-1», летающая вокруг звезды с 1959 г. Поместить ее в музей будет намного труднее, чем телескоп «Кеплер», из-за большой неопределенности с ее орбитой. Всего же вокруг Солнца обращается несколько десятков рукотворных (made on Earth by humans, «сделанных на Земле людьми», как сформулировали в SpaceX) изделий, часть из которых оказалась там относительно случайно, например из-за потери связи на пути к Венере или Марсу, часть – по «техническим» причинам, как, например, третьи ступени ракет «Сатурн V», использованных при запуске некоторых из кораблей «Аполлон», и даже один лунный модуль – другой очевидный кандидат на то, чтобы когда-нибудь быть выловленным. Там же – исследователи комет и астероидов, инфракрасный телескоп «Спитцер» и родстер Tesla (рис. 2.15).


Рис. 2.15. Фрагмент электронной платы родстера Tesla, запущенного на гелио-центрическую орбиту


Экстремальный маневр Оберта. Выигрыш в энергии, который достигается при маневре Оберта, зависит от того, насколько глубоко удается нырнуть в «гравитационный колодец»: степень сближения с планетой определяет, до какой скорости разгонится космический корабль к моменту включения двигателя, а потому и влияет на энергию движения, которую он приобретет в результате этого включения. Схема, которую рассматривал сам Оберт, состояла в том, чтобы, начав с высокой круговой орбиты, включить двигатель против скорости, спуститься как можно ближе к планете, а на участке максимального приближения включить двигатель «по ходу» и в результате уйти от планеты с впечатляющей скоростью. Предельно возможное сближение – радиус планеты (хотя если речь идет о полноценной планете с атмосферой, то эта последняя является ограничителем, потому что взаимодействие даже с ее верхними слоями может произвести эффект, далекий от желаемого). Вот если бы планета той же массы была меньше в размерах! Делая радиус планеты все меньше и меньше, но сохраняя ее массу неизменной, мы черпали бы из гравитационного колодца все бóльшую и бóльшую прибавку к энергии движения. Но что значит уменьшить радиус, а массу оставить прежней? Это значит сделать тело (планету, звезду, …) более плотным. Известны несколько стадий уплотнения материи далеко за пределы представимого: белый карлик и нейтронная звезда. Ни то ни другое решительно невозможно создать по нашему желанию, однако в космосе эти сверхплотные объекты существуют и дают о себе знать. В случае еще более сильного уплотнения материя в известных нам формах исчезает, оставляя вместо себя область пустого пространства с чрезвычайно сильной гравитацией. Такая область пространства называется черной дырой (они ждут нас на нескольких последующих прогулках).

Что, если бы вместо Луны по той же самой орбите вокруг Земли летала черная дыра той же массы, что и Луна? Это было бы прискорбно для влюбленных и, возможно, для некоторых организмов с ночным образом жизни, однако с точки зрения тяготения на Земле ничего не изменилось бы: например, происходили бы практически точно такие же приливы и отливы (о них мы подробнее говорим ниже, на прогулке 4). Движение Земли вокруг общего центра масс Земля – Черная Луна тоже не изменилось бы. Но Черная Луна имела бы радиус около 0,1 мм против 1 737 400 000 мм для Фактической Луны. Формулы ньютоновой механики для выигрыша энергии (согласно которым отношение 1 737 400 000: 0,1 превращается в увеличение энергии более чем в сто тысяч раз) применять вблизи черной дыры уже нельзя, да и подлетать к самому горизонту черной дыры – не очень хорошая идея, как мы увидим на прогулке 7, но, как бы то ни было, наличие черной дыры вместо Луны, вероятно, позволило бы нам отправлять Настоящие Космические Ракеты за пределы Солнечной системы с по-настоящему высокими скоростями. Вернуться, правда, они бы не могли, если только где-то близко к месту назначения для них не был бы обеспечен запас черных дыр, подходящих для гравитационных маневров.

Штернфельдовы биэллиптические траектории. Переходные траектории, изображенные на рис. 2.14, рассчитал пионер космонавтики (и изобретатель самого слова «космонавтика», как и слова «космодром») Штернфельд в своей работе «О траекториях полета к центральному светилу со стартом с определенной кеплеровской орбиты» [101] (в авторском переводе ее заглавия с французского). В заметке [41] Штернфельд приводит, в частности, такие подробности об этой работе:

Доклад «О траекториях полета…» нашел широкий отклик в английской, французской и немецкой научной прессе. Хорошего мнения о нем был Герман Оберт. Вальтер Гоман направил мне письмо (от 22 марта 1934 г.), в котором он оценил мой доклад как «интересную работу о наиболее выгодных кеплеровских траекториях для достижения областей, близких к центральному небесному телу». Эту работу, а также мой предыдущий доклад, представленный Французской академии наук, я послал К. Э. Циолковскому, с которым меня уже несколько лет связывала дружеская переписка.

Удивительные «предкосмические» времена! В конце 1930-х гг. Королев приглашал Кондратюка к совместной работе, но тот отказывался (возможно, опасаясь ареста за использование поддельных документов).

Признания и литературные комментарии

«Энергия в поле притяжения» – это потенциальная энергия (да, в поле притяжения). Она имеется всегда, когда два тела притягивают друг друга. В поле притяжения Земли она зависит от массы тела и расстояния до центра Земли (и от того, насколько массивна сама Земля, но тут уж что есть, то есть).

Путешествия к Луне – предмет статей, собранных в книге [29] с изображением ракеты «Сатурн V» на обложке, и отчасти – тема более «визуальной», в смысле иллюстраций и оформления, книги [38]. В обеих книгах много подробностей, которые я оставил в стороне. Астронавт, по совместительству обладающий литературным даром, написал прекрасную книгу [59], впервые вышедшую в 1974 г. и переиздававшуюся к 40-летнему и 50-летнему юбилею полета «Аполлона-11». Оттуда я взял все цитаты Коллинза, кроме той, что приведена в самом конце главы – она прозвучала в одном из данных им интервью, и этот фрагмент присутствует на нескольких ресурсах, например https://www.pbs.org/video/how-nasas-apollo-8-left-earths-orbit-asi5z6/. Хронология полета «Аполлона-8» представлена на сайте NASA: https://history.nasa.gov/SP-4029/Apollo_08i_Timeline.htm. Выходя после радиомолчания из-за Луны на «Аполлоне-8», успешно помещенном на траекторию возвращения, Ловелл успокоил центр управления фразой «Имейте в виду, Санта-Клаус существует» (дело было 25 декабря). С начальными элементами космонавтики (включая гравитационную пращу) в современном изложении можно познакомиться по популярным лекциям [30], где, впрочем, космонавтика только одна из многих затронутых тем. Дополнительные возможности, предоставляемые анимацией, да и не только они, использованы в лекциях https://scfh.ru/lecture/kosmonavtika/. Оттуда же взяты рис. 2.10 и рис. 2.12. Более подробно традиционные вопросы космонавтики освещены в книге [17]; «классическое», но существенно более продвинутое изложение имеется в книге [2]. Использование звезд, белых карликов и нейтронных звезд для ускорения космических аппаратов («межзвездных зондов») обсуждается в [26]. Жизнь астероидов затрагивается среди прочего в книге [28]. Орбита космического телескопа JWST описана по ссылке https://jwst-docs.stsci.edu/jwst-observatory-characteristics/jwst-orbit. Жизнеописания Кондратюка и Штернфельда заслуживают того, чтобы познакомиться с ними по доступным в интернете источникам.

Движение на прогулках 1 и 2

Из наблюдений за движением планет и смелой идеи, что причина движения и Луны, и падающего яблока одна и та же, выросло понимание тяготения – силы, которая организует всю «большую» Вселенную. Возникшее до появления первой паровой машины, это понимание уже в век первых компьютеров позволило совершать действия, которые незадолго до того были предметом фантастики: например, отправить тело в такое движение, чтобы оно без дальнейшего вмешательства облетело Луну и повернуло к Земле; высадиться на Луне и вернуться на Землю; использовать планеты для разгона космических аппаратов. Как ни для чего другого, для движения космических аппаратов актуальны теоретические представления, накопленные за десятилетия и даже столетия до того, как они понадобились в практическом плане. Предсказанные за 150 лет до первого искусственного спутника Земли специальные траектории в системе двух тел, движущихся одно вокруг другого, сейчас используются как космические парковки для телескопов и других аппаратов со специальными задачами наблюдения. Маневры с целью тем или иным образом изменить характер орбитального движения – упражнение по преодолению «само собой разумеющихся», очевидных представлений; основные идеи на их счет были сформулированы еще в первой половине XX в., а во второй его половине космонавтов и астронавтов пришлось специально обучать схеме «контринтуитивных» действий. Примерно такой же отрезок времени разделяет идею и реализацию в случае гравитационной пращи и эффекта Оберта. Одна из составляющих космонавтики – теоретическое знание, развивавшееся в ответ на старые вопросы о причинах и характере движения планет в Солнечной системе.

Прогулка 3