Хокингу удается создать видимость, что эта фундаментальная теория понятнее, чем есть на самом деле, когда говорит, что она описывает 11-мерное пространство-время. Термин «М-теория» был предложен Эдвардом Виттеном в 1995 г. (Виттен никогда не утруждался объяснениями, что означает буква М.) М-теория Виттена действительно представляет собой 11-мерную теорию частиц и мембран, однако эта теория была предложена только как одно из множества приближенных решений неизвестной фундаментальной теории, но не как сама фундаментальная теория. У нас нет понимания, какой размерности должна быть эта основополагающая теория. Многие теоретики считают, что это не теория пространства-времени, а что сами пространство и время возникают только как приближенные решения фундаментальной теории.
Если мы так мало знаем об этой фундаментальной теории, то почему же считаем, что она должна существовать? В качестве аргумента Хокинг ссылается на то обстоятельство, что в ситуации, когда два варианта теории струн или других предлагаемых приближенных решений фундаментальной теории должны быть справедливы, тогда, как показывают расчеты, два решения согласуются друг с другом. (Эту важную мысль высказал Виттен в своей выдающейся лекции, прочитанной в 1995 г. в Университете Южной Каролины.) Хокинг использует очень полезную аналогию с картами разных регионов Земли. Мы можем разделить всю поверхность Земли на пересекающиеся области так, чтобы каждая область не превышала нескольких сотен километров в поперечнике, то есть была достаточно небольшой, и расстояния и направления, измеренные по такой карте, давали бы хорошее приближенное представление о действительных расстояниях и направлениях на поверхности Земли. Даже если мы не будем знать заранее, что все эти карты описывают единую цельную поверхность, мы сможем выяснить это, заметив, что карты любых двух перекрывающихся участков одинаково изображают то место, где они перекрываются. Поверхность Земли в рамках этой аналогии соответствует фундаментальной теории (М-теории Хокинга), а отдельные карты — разным приближенным решениям этой теории.
Хокинг высказывает поразительное и тревожное предположение, что, возможно, не существует основополагающей теории и максимум, на что мы можем рассчитывать, это на набор приближенных теорий, каждая из которых справедлива при определенных условиях и согласуется с другими там, где эти условия пересекаются. Здесь прекрасная аналогия с картами земной поверхности рушится. Это правда, что невозможно создать достоверную карту всей сферической поверхности Земли на плоском листе бумаги, но, в конце концов, существует не только пачка пересекающихся приближенных карт, но и сама Земля.
Более того, Хокинг крайне скептически смотрит на реальность в целом. Это отношение можно заметить в его утверждении, что в квантовой механике «у Вселенной не одна-единственная история, но бесконечное множество отдельных историй». Это верно, если историю понимать в терминах классической физики как непрерывное движение частиц из одной точки в другую в каждое следующее мгновение. Я же предпочитаю иной взгляд на квантовую механику. Вселенная или любая другая система все же имеет четко определенную историю, но при этом в каждый отдельный момент времени непрерывно изменяются не положения частиц или величины полей, а нечто, называемое вектором состояния. Это вектор в бесконечномерном Гильбертовом пространстве, и направление вектора задает состояние системы в каждый отдельный момент времени. Направление вектора описывает не состояние частицы с четко определенным положением в пространстве, а суперпозицию таких состояний. Именно поэтому квантовая механика кажется такой загадочной. Однако если использовать ее язык, то ничего странного в истории физических систем нет. Направление вектора состояния изменяется во времени совершенно точно и детерминированно. Говорить о том, что у материального мира нет четко определенной истории, можно, только если продолжать описывать мир языком классической физики.
Хокинг хорошо показывает, как ученые решают, что действительно реально: мы строим рациональные модели, которые с некоторой степенью точности и в некотором диапазоне явлений согласуются с результатами наблюдений. Но Хокинг называет такой подход «модельно-зависимой реальностью» и считает, что это все, что мы можем сказать о реальности.
Вопросы о природе реальности озадачивали ученых и философов тысячи лет. Как и большинство людей, я думаю, что реальность существует и она совершенно независима от нас и наших моделей, как Земля независима от наших карт ее поверхности. Но я так думаю, поскольку не могу не верить в объективную реальность, а не потому, что у меня есть хорошие аргументы. Я не готов утверждать, что антиреализм Хокинга ошибочен. Но я настаиваю, что ни квантовая механика, ни любая другая физическая теория не сможет ответить на этот вопрос.
В книге Хокинга есть еще несколько мест, где автор переоценивает способность науки отвечать на глубокие философские вопросы. На основе общих идей детерминизма и результатов экспериментов, которые демонстрируют влияние физических факторов на наше поведение, он делает вывод об отсутствии свободы воли. Иллюзию свободы воли он объясняет тем, что человеческое тело состоит из примерно тысячи триллионов триллионов частиц, поэтому с практической точки зрения невозможно предсказать поведение людей. Но я бы сказал, что свобода воли — это только наш сознательный опыт, помогающий принимать решения. И этот опыт не умаляется из-за того, что в результате действия законов физики я неизбежно захочу принять определенные решения. Грозовые молнии тоже состоят из многих триллионов триллионов частиц, и их поведение также труднопредсказуемо, однако мы не приписываем им свободу воли, поскольку не считаем, что они обладают сознательным опытом принятия решений.
На самой первой странице Хокинг пишет, что философия отстала в развитии от современной науки, от физики особенно. А я бы сказал, что пусть философы и не приблизились к решению древних вопросов философии, но и физики не слишком преуспели.
Не поймите меня неправильно. «Высший замысел» — прекрасная книга, которая знакомит читателя с передним краем теоретической физики и объясняет некоторые научные идеи (например, фейнмановскую трактовку квантовой механики) широкому читателю намного понятнее, чем в книгах, которые мне приходилось видеть ранее. Мои представления серьезно расходятся с Хокингом только в тех вопросах, которые разделяют физиков и философов, но не в тех, которые могут быть легко разрешены.
Тем не менее, поскольку я время от времени читаю курс по истории науки в Университете Техаса, я чувствую своим долгом указать на некоторые фактические ошибки в рецензируемой книге.
Возможно, по причине своего антиреализма, Хокинг утверждает, что преимущество модели Солнечной системы, предложенной Коперником, перед моделью Птолемея состояло в том, что «уравнения движения, записанные в системе координат, в которой Земля неподвижна, оказываются намного проще». Это не так: первое очевидное свидетельство превосходства модели Коперника было связано не с уравнениями движения, опубликованными Ньютоном в 1687 г., а с результатами наблюдений фаз Венеры, полученными Галилеем в 1610 г., которые ясно подтверждали правоту Коперника в споре с Птолемеем[78].
Хокинг утверждает, что сохранился только один из расчетов, выполненных Аристархом, в котором Аристарх проанализировал размер тени, отбрасываемой Землей на поверхность Луны в процессе лунного затмения, и на основе этого анализа пришел к выводу, что Солнце намного больше Земли. Однако Аристарх никогда бы не смог сделать такой вывод самостоятельно на основе наблюдений за лунным затмением. На самом деле по его сохранившейся работе видно, что Аристарх использовал также измерения видимых размеров (в долях прямого угла) Солнца и Луны, а также тот факт, что угол между зрительными линиями, направленными на Солнце и Луну в фазе, когда Луна наполовину затенена, немного отличается от прямого.
Открытие равенства углов падения и отражения луча от зеркальной поверхности Хокинг приписывает Архимеду. В сохранившихся работах Архимеда нет ничего, что относилось бы к закону отражения, хотя он мог написать об этом в одной из утерянных ныне книг. Принято считать, что закон отражения был открыт Евклидом, который работал за сотню лет до Архимеда, однако современные историки не уверены, кто именно открыл закон отражения. Если все-таки нужно кому-то приписать это открытие, я бы проголосовал за Герона Александрийского (жившего, правда, позже Евклида и Архимеда), который не только сформулировал, но и доказал этот закон, исходя из предположения о том, что путь, пройденный отраженным лучом между объектом и наблюдателем, должен быть минимальным.
Такие несущественные ошибки ничуть не снижают ценности этой увлекательной книги и могут быть легко исправлены в будущих изданиях.
11. Разнообразие симметрий
История физики XX в., начиная со СТО Эйнштейна, во многом связана с открытием принципов симметрии и различных способов проявления этих симметрий в физических явлениях. Во всяком случае, в своих работах я имел дело с симметриями того или иного рода. Я был рад, когда в августе 2009 г. меня пригласили в Технический университет Будапешта выступить на конференции, посвященной симметрии, во-первых, потому, что появилась возможность предложить собственный взгляд на симметрию, а во-вторых, потому, что я никогда раньше не был в Будапеште. Сокращенная версия моего выступления опубликована в журнале The New York Review of Books 27 октября 2011 г. Расширенный вариант текста, приведенный в этой главе, вышел в 2012 г. в журнале Symmetry: Culture and Science и почти полностью соответствует тексту моего выступления в Будапеште.
Когда в конце 1950-х гг. я начал свою исследовательскую деятельность, мне казалось, что физика находится в печальном состоянии. Десятью годами ранее был достигнут значительный успех в квантовой электродинамике, науке об электронах, фотонах и их взаимодействии. Затем физики научились с беспрецедентной для всей науки точностью рассчитывать такие вещи, как магнитное поле электрона. Но теперь мы столкнулись с недавно открытыми экзотическими частицами, часть которых существует только в космических лучах и больше нигде. А еще нам пришлось иметь дело с загадочными силами: сильным ядерным взаимодействием, которое удерживает частицы вместе внутри атомного ядра, и слабым ядерным взаимодействием, которое может изменять тип этих частиц. Не существовало теории, которая могла бы описать эти частицы и взаимодействия, а когда мы предприняли попытку создать такую теорию, то обнаружили, что либо не можем просчитать следствия из этой теории, либо получаем бессмысленные результаты вроде бесконечных значений энергии или бесконечных значений вероятности. Казалось, что природа, как находчивый противник, намеревается скрыть от нас свой генеральный план.