Так чувство признательности заставило меня ответить согласием на предложение Издательства Техасского университета поучаствовать в написании книги о кладбище штата, которую планировалось издать в 2011 г. Издательство попросило меня написать предисловие к главе, посвященной преподавателям и ученым, похороненным здесь. Мне пришлось покопаться в истории Техаса, которая, я надеюсь, может увлечь читателей, не испытывающих особого интереса к кладбищам.
Когда первые поселенцы пришли на территорию современного Техаса, они столкнулись с проблемами, связанными с подготовкой земель для ведения сельского хозяйства, войной с индейцами и преодолением ужасных конфликтов и противоречий, обусловленных Войной за независимость Техаса и Гражданской войной. В целом и без заботы о высшем образовании проблем хватало, однако с самого начала некоторые техасцы мечтали о построении цивилизованного общества, благословленного колледжами и университетами. Первые колледжи, основанные в период существования Техасской республики, были маленькими церковными школами: в 1840 г. был основан колледж Саут Вестерн, а в 1845 г. — Бейлор и Мэри Хардин-Бейлор. Университет Тринити (названный по имени реки) был основан после Гражданской войны в 1869 г.
Частное финансирование ни одного из названных колледжей не может сравниться с обеспечением таких школ, как Гарвард и Йель на Восточном побережье. Только сам штат располагает необходимыми ресурсами для создания крупного университета. Республике требовался университет «первого класса», поэтому власти выделили несколько квадратных километров земли, но так и не нашли время, чтобы основать университет. Эрудит Гидеон Линсекум, первый техасец, получивший международное признание в науке, был самоучкой и никогда не занимал должности в университете.
Наконец, в период с 1876 по 1881 г. штат приступил к созданию университетов: появились Техасский университет A&M в Колледж-Стейшн, Университет Прейри Вью A&M, Техасский университет в Остине и Университет Техас Медикал Бранч в Галвестоне. Пожалуй, самый неоценимый вклад в реализацию этой программы внес Ашбель Смит, основатель Университета Прейри Вью, регент и первый президент Техасского университета и инициатор создания Медикал Бранч.
С тех пор университеты и колледжи Техаса постепенно наращивали силу и авторитет. Три университета, а именно Техасский университет в Остине, Техасский университет A&M в Колледж-Стейшн и Университет Райса, теперь являются всемирно признанными исследовательскими центрами; медицинский факультет Техасского университета и Медицинский колледж Бейлор числятся среди лучших в мире; свои островки мастерства есть и в других многочисленных школах Техаса.
Такой рост высшего образования испытывал влияние общественной жизни в Техасе и сам оказывал влияние на нее. Пейдж Китон, долгое время служивший деканом юридического факультета Техасского университета, преданно защищал академическую свободу в 1950-х и 1960-х гг. и твердо следовал букве и духу решения Верховного суда, открывшего двери юридической школы для чернокожих студентов. После продолжительной государственной службы Барбара Джордан пришла в Школу общественных связей им. Линдона Джонсона Техасского университета, чтобы поделиться своими опытом и мудростью.
Несмотря на развитие высшего образования в Техасе, покойные студенты и ученые занимают лишь малую часть земли (или, корректнее будет сказать, подземелья) кладбища штата Техас. Отчасти это связано с тем, что многие годы право захоронения на кладбище штата предоставлялось только ветеранам Гражданской войны, выборным государственным чиновникам, членам государственных комиссий и их супругам. Чтобы открыть кладбище для Фрэнка Доби или Пейдж Китон, потребовались распоряжение губернатора и соответствующий законодательный акт. В 1997 г. в законодательном органе штата был создан Комитет кладбища штата Техас, который получил право выдавать разрешения на захоронения техасцев, внесших заметный вклад в жизнь штата в любой области деятельности. На могилах преподавателей, вероятно, не будут ставить такие же монументальные плиты, какие стоят в честь Стивена Остина или Альберта Сидни Джонстона, но все же количество могил преподавателей будет расти, что станет свидетельством процветания науки и образования в Техасе.
5. Возвышение Стандартных моделей
Журнал The New York Review of Books был основан в 1963 г. во время забастовки полиграфистов, из-за которой остановился выпуск ряда газет, в том числе The New York Times. Под руководством Роберта Сильверса и Барбары Эпштейн (умерла в 2006 г.) New York Review стал «ведущим литературно-интеллектуальным журналом на английском языке», по мнению одного из изданий. В 1995 г. я отправил в Review свою первую статью и с тех пор с огромным удовольствием пишу для этого журнала. Он дает своим авторам возможность высказывать мнения, выходящие за рамки простого суждения о рецензируемой книге, иногда даже можно и без рецензии обойтись. Кроме того, я обнаружил, что мои тексты совершенно точно становятся лучше благодаря работе с Сильверсом, хотя мой опыт работы с редакторами других периодических изданий не всегда столь позитивен. Поэтому я был очень рад, когда в 2013 г. меня пригласили присоединиться к 24 другим авторам, чтобы написать материал для юбилейного выпуска Review. Эта статья была опубликована в 50-м, юбилейном номере в ноябре 2013 г.
За последние 50 лет в двух крупных областях физики произошел исторический сдвиг. Помнится, в начале 1960-х гг. и космология, и физика элементарных частиц представляли собой какофонию конкурирующих гипотез. Сегодня же в каждой из этих областей имеется своя общепринятая теория, про которую говорят, что это — «стандартная модель».
Благодаря космологии и физике элементарных частиц мы получаем достоверные знания о явлениях, обнаруживаемых на разных расстояниях — от огромных до кратчайших. Ученые-космологи вглядываются в космический горизонт — на предельное расстояние, которое свет мог пройти с того момента, как Вселенная стала прозрачной для него, то есть за 13,8 млрд лет, а физики, занимающиеся элементарными частицами, изучают процессы на расстояниях много меньше размера атомного ядра. И наши стандартные модели действительно работают: они позволяют с высокой точностью выполнять количественные расчеты, результаты которых согласуются с наблюдениями.
До некоторого момента историю космологии и физики частиц можно рассказывать независимо друг от друга. Однако к концу статьи эти истории сойдутся, так же как они сходятся в нашей научной работе.
Научная космология началась в 1920-х гг. Именно тогда ученые выяснили, что маленькие облака, которые не меняют своего видимого положения среди звезд, на самом деле далекие галактики вроде нашего Млечного Пути, и в каждой из них — многие миллиарды звезд. Затем обнаружилось, что все эти галактики удаляются от нас и друг от друга. Несколько десятилетий все космологические исследования были почти полностью сосредоточены на попытках определить скорость расширения Вселенной и измерить возможное изменение этой скорости.
Как ни странно, очень мало внимания было уделено очевидному выводу: если галактики удаляются друг от друга, значит, в какой-то момент времени в прошлом они все были «спрессованы» вместе. По измеренной скорости расширения можно определить, что этот момент времени удален от нас на несколько миллиардов лет. Расчеты, выполненные в конце 1940-х гг., показали, что ранняя Вселенная должна была быть очень горячей, иначе весь водород в ней (самый распространенный элемент) образовал бы более тяжелые химические элементы. Горячая материя должна излучать свет, который сохранился бы до настоящего времени в виде слабого статичного микроволнового фона (реликтового излучения), охлажденного в результате расширения Вселенной до современного уровня температуры, составляющего несколько градусов выше абсолютного нуля[33].
Никаких попыток найти это остаточное космическое микроволновое фоновое излучение не предпринималось, и об этом предсказании практически забыли. Некоторое время теоретики даже допускали, что Вселенная находится в стационарном состоянии и всегда выглядит примерно одинаково, а пустоту между разбегающимися галактиками заполняет непрерывно образующаяся новая материя.
Современная эпоха научной космологии началась 48 лет назад, когда случайно было открыто реликтовое излучение. На этом стационарная космология закончилась — ранняя Вселенная действительно существовала. С тех пор реликтовое излучение интенсивно исследовалось с помощью как околоземных спутников, так и наземных радиотелескопов. Теперь мы знаем, что современное значение температуры реликтового излучения составляет 2,725° выше абсолютного нуля. Если эти данные использовать для расчетов образования атомных ядер в первые три минуты после Большого взрыва, тогда их результаты предскажут наблюдаемую распространенность легких элементов (изотопов водорода, гелия и лития) с некоторыми оговорками относительно лития. Более тяжелые химические элементы, как известно, образуются внутри звезд.
Куда важнее, чем точное измерение температуры, открытие 1992 г., что температура реликтового излучения для разных участков неба разная. В ее распределении были обнаружены флуктуации масштаба одной стотысячной доли. Это явление не стало сюрпризом. Такая мелкая зыбь в распределении температуры должна наблюдаться из-за малых сгустков материи в ранней Вселенной, которые впоследствии стали центрами гравитационной конденсации материи в галактики.
Эти сгустки и флуктуации обусловлены хаотическими волнами, похожими на звуковые в материи ранней Вселенной. Пока температура Вселенной превышала 3000 K, электроны в разогретой материи находились в свободном состоянии и непрерывно рассеивали излучение, поэтому сжатие и разрежение в звуковых волнах создавало соответствующие изменения в интенсивности излучения. Мы не можем заглянуть непосредственно в тот период времени, поскольку взаимодействие излучения со свободными электронами сделало Вселенную непрозрачной, но, когда Вселенная остыла до 3000 K, электроны оказались заперты в атомах водорода и Вселенная стала прозрачной. Излучение того времени сохранилось, остыло за счет расширения Вселенной и все еще несет в себе отпечаток волн, которые наполняли Вселенную до того, как она стала прозрачной.