Введение в логику и научный метод — страница 17 из 51

§ 1. Функция аксиом

Несмотря на то что вавилоняне и египтяне располагали большим количеством информации о затмениях Солнца и Луны, способах измерения земли и построения зданий, расположениях геометрических фигур в порядке симметрии и исчислении с целыми числами и дробями, в общем, считается, что у них не было науки обо всем этом. Идеей науки мы обязаны грекам.

Информация, состоящая из набора изолированных суждений, какими бы достоверными и исчерпывающими они ни были, не является наукой. Телефонный справочник, словарь, поваренная книга или строго упорядоченный каталог товара, проданного в универмаге, могут содержать точное знание, организованное в удобном порядке, однако мы при этом не считаем такие произведения научными трудами. Наука требует того, чтобы наши суждения формировали логическую систему, т. е. чтобы они состояли друг с другом в одном из рассмотренных выше отношений эквивалентности или контра-позитивности. Именно поэтому в данной главе мы продолжаем наше исследование природы доказательства, с тем чтобы прояснить некоторые родовые свойства дедуктивных систем. Мы увидим, что подобное исследование тождественно исследованию природы математики.

Вспомним, что ни одно суждение не может быть доказано экспериментальным методом. Читатель, без сомнения, знаком с теоремой Пифагора, согласно которой в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Без сомнения, ему доводилось доказывать ее в школе. Тем не менее, весьма вероятно, что в любой группе людей с высшим образованием найдется такой, который для доказательства данной теоремы станет использовать транспортир и линейку, с тем чтобы точно начертить нужные прямоугольные треугольники. Можно сказать, что в интересующем нас отношении данный индивид не сделал существенного прогресса по сравнению с методами древнеегипетских исследователей.

Допустим, к примеру, что нам пришлось бы доказывать теорему Пифагора, непосредственно прочерчивая квадраты на трех сторонах прямоугольного треугольника, изображенного на фольге равномерной плотности, затем вырезая их и взвешивая, с тем чтобы убедиться в том, что квадрат гипотенузы весит столько же, сколько и квадраты катетов. Означало бы подобное действие доказательство? Разумеется, нет, ибо мы никогда не можем быть до конца уверенными в том, что фольга имеет одинаковую плотность по всей своей площади, или в том, что вырезанные куски представляют идеальные квадраты. Отсюда следует, что если в ряде экспериментов нам не удастся отыскать идеальное совпадение в весе кусков фольги, то проделанные операции нельзя будет считать свидетельством против позиции, согласно которой идеальное равновесие все же было бы достигнуто, если бы проведенные нами линии были бы идеально прямыми, углы квадрата были бы идеально прямыми, а масса фольги абсолютно равномерной. Логическое доказательство, или демонстрация, как мы уже убедились, заключается в указании на определенное суждение как необходимое следствие других определенных суждений. В доказательстве ничего не утверждается о фактической истинности какой-либо из посылок или их логического следствия.

«Но минутку! – может воскликнуть читатель. – Разве мы не доказываем то, что теоремы в геометрии на самом деле истинны? Разве математика не является самой точной наукой, в которой указывается, что определенное свойство раз и навсегда присуще объектам определенного типа? Если вы рассмотрите любое утверждение в теореме, например в теореме Пифагора, то вы найдете в ней утверждение относительно всех треугольников. Если же вы допускаете, что доказано, что нечто действительно истинно для всех треугольников, то почему вы не соглашаетесь с тем, что мы одновременно устанавливаем «материальную» истинность такой теоремы? Разве слово «все» на самом деле не означает все треугольники?»

В данном протесте, однако, не учитывается то уже упоминавшееся обстоятельство, что логическое доказательство является указанием или проявлением импликаций между набором суждений, называемых «аксиомами», и набором суждений, называемых «теоремами», и что сами по себе аксиомы не доказываются.

Читатель может на это ответить: «Аксиомы не доказываются, потому что они не нуждаются в доказательстве. Их истина самоочевидна. Все могут удостовериться в том, что такие суждения, как «целое больше, чем любая из его частей» или «через две точки можно прочертить только одну прямую», с очевидностью являются истинными. Тем самым они становятся удовлетворительной основой для геометрии, поскольку с помощью них мы можем установить истинность суждений, не являющихся самоочевидными».

В подобной реплике отражен традиционный подход. Вплоть до конца XIX века считалось, что аксиомы являются материальными истинами физического мира и что неопровержимость доказательств зависит от этой присущей им материальной истинности. Тем не менее, в данном видении аксиом смешиваются три различных вопроса:

1. Как устанавливается материальная истинность аксиом?

2. Являются ли аксиомы материально истинными?

3. Являются ли теоремы логическими следствиями ясно сформулированных аксиом?


Данные вопросы необходимо рассматривать по отдельности.

1. Ответ, который обычно дается на первый вопрос, заключается в утверждении о том, что аксиомы являются самоочевидными истинами. Однако данный подход – это всего лишь удобный способ отказа от рассмотрения подлинных трудностей. Во-первых, если под термином «самоочевидность» подразумевать психологическую несомненность, непреодолимый импульс утверждать нечто или психологическую невообразимость каких-либо противоположных суждений, то это не даст нам надежного критерия истинности, и история человеческой мысли является тому хорошим подтверждением. Многие суждения, ранее рассматривавшиеся в качестве самоочевидных, например такие, как «природа не терпит вакуума», «на противоположной точке Земли люди ходят вверх ногами», «любая поверхность имеет две стороны», сегодня считаются ложными. На самом деле каждое из противоречащих друг другу суждений относительно любой предметной области (в том числе и наиболее спорные суждения) в разное время утверждалось в качестве фундаментального и интуитивно ясного суждения, истинность которого, следовательно, считалась самоочевидной. Однако является ли определенное суждение очевидным или нет, зависит от культурного контекста и индивидуальной подготовки, и поэтому суждение, являющееся с очевидностью истинным для одного человека или группы людей, может не являться таковым для другого человека или группы.

Данная точка зрения предполагает наличие у людей способности формулировать общие суждения, относящиеся к фактическому положению дел, просто посредством анализа значения суждения. Однако повторим еще раз, что история человеческой мысли, равно как и анализ природы значения, продемонстрировали, что существует огромное различие между пониманием значения суждения и знанием его истинностного значения. Истинность общих суждений, в которых сообщается о неопределенном количестве эмпирических фактов, никогда не может быть установлена. Следовательно, основополагающей причиной для отрицания того, что истинность аксиом геометрии или любой другой области математики является самоочевидной, является то, что каждая аксиома имеет, по крайней мере, одну значимую противоположную аксиому.

«Однако разве математики не открывают аксиомы на основании наблюдения за поведением материи в пространстве и времени?» – может спросить читатель. «И разве эти аксиомы не являются более достоверными, чем теоремы?»

Для того чтобы ответить на этот вопрос, нам нужно обратиться к древнему различию, проведенному еще Аристотелем, между временным порядком, в котором открывается логическая зависимость суждений, и логическим порядком импликаций между суждениями. Нет сомнения в том, что многие из аксиом математики являются выражением того, что мы считаем истинным относительно избранных частей природы, и что многие прорывы в математике стали возможными, потому что как исследование математика исторически не началась с формулировки ряда аксиом, из которых затем были выведены теоремы. Мы знаем, что многие из суждений, сформулированных Евклидом, были известны за сотни лет до него; и нет сомнения в том, что люди верили в их материальную истинность. Основной вклад Евклида заключался не в открытии дополнительных теорем, а в представлении их в виде частей системы связанных друг с другом истин. Вопрос, который Евклид, должно быть, задавал сам себе, выглядит следующим образом: если даны теоремы о сумме углов треугольника, о подобных треугольниках, если дана теорема Пифагора и прочие теоремы, то каково минимальное число допущений или аксиом, из которых эти теоремы могут быть выведены? В результате данной работы из суждений, ранее считавшихся независимыми друг от друга, была получена геометрия в качестве первой дедуктивной системы. Таким образом, в действительности аксиомы были открыты позднее, чем теоремы, хотя логически они предшествуют последним.

В силу предубеждения довольно часто считается, что логически предшествующие суждения «лучше известны» или «более достоверны», чем теоремы, и что в общем логический приоритет одних суждений по сравнению с другими каким-то образом связан с истинностью этих суждений. На самом же деле аксиомы попросту являются допущениями, или гипотезами, используемыми для систематизации, а иногда и для открытия теорем, которые из них следуют. Из этого вытекает, что для открытия теорем вовсе не требуется знать аксиомы, а также и то, что, как правило, в науке аксиомы являются психологически гораздо менее очевидными, чем теоремы. Как мы увидим, в большинстве наук материальная истинность теорем не устанавливается посредством указания на материальную истинность аксиом. Скорее наоборот: эмпирическое установление истинности или вероятности теорем делает вероятной истинность аксиом.

2. Таким образом, следует признать, что ответ на вопрос о материальной истинности аксиом нельзя получить, основываясь только на логике. Материальная истинность должна быть установлена особой естественной наукой, эмпирически исследующей предметную область тех или иных аксиом. При этом также следует признать и то, что материальная истинность или ложность аксиом не является заботой логика или математика, ибо их интересует только факт выводимости или невыводимости теорем из аксиом. Поэтому важно отличать чистую математику, имеющую дело только с фактами импликации, от прикладной математики, или естественной науки, которая имеет дело также и с вопросами материальной истины.

3. Вопрос о том, являются ли конкретные теоремы логическими следствиями конкретных аксиом, следовательно, должен разрешаться исключительно логическими методами. Это, однако, не всегда так просто, как может показаться на первый взгляд. На протяжении многих сотен лет доказательства, предложенные Евклидом, считались обоснованными, несмотря на то что опирались на ряд неявных предпосылок. С тех времен требования к логической строгости в математическом доказательстве стали более жесткими, и сегодня для исследования вопросов обоснованности в науке требуется серьезная компетентность в логике и специальная техническая подкованность. Более того, в некоторых областях математики обоснованность ряда доказательств до сих пор остается неустановленной.

На данном этапе мы уже можем резюмировать первые полученные результаты относительно природы логической системы. Суждения могут быть доказаны посредством указания на отношения импликации между этими суждениями и некоторыми другими суждениями. Однако не все суждения той или иной системы могут быть доказаны, ибо в противном случае наше доказательство стало бы цикличным. При этом следует отметить, что суждения, являющиеся аксиомами в одной системе, могут быть доказаны в другой системе. Точно так же термины, неопределяемые в одной системе, могут быть определены в другой системе. Таким образом, то, что мы называли чистой математикой, является гипотетико-дедуктивной системой. Ее аксиомы служат в качестве гипотез, или допущений, и имплицируют остальные суждения. В целом, логическое отношение между аксиомами и теоремами является отношением подчиняющего к подчиненному. Если всю геометрию свести к одному суждению, то такое суждение будет условным, а его антецедентом будут именно аксиомы. Однако, как мы увидим, аксиомы также являются важной характеристикой формальной структуры системы, в которой элементами являются теоремы.

§ 2. Чистая математика. Иллюстрация

Вероятно, читатель знакомился с некоторыми примерами логических систем при изучении математики. К тому же мы уже рассмотрели подобный пример при обсуждении силлогизмов. Однако будет небесполезно сделать это заново. Рассмотрим следующие суждения, являющиеся аксиомами для особого вида геометрии.

Аксиома 1. Если А и В являются различными точками на плоскости, то существует по меньшей мере одна прямая, содержащая одновременно А и В.

Аксиома 2. Если А и В являются различными точками на плоскости, то существует не больше одной прямой, содержащей одновременно А и В.

Аксиома 3. Любые две прямые на плоскости имеют по меньшей мере одну общую точку этой плоскости.

Аксиома 4. На плоскости существует по меньшей мере одна прямая.

Аксиома 5. Всякая прямая содержит по меньшей мере три точки плоскости.

Аксиома 6. Все точки плоскости не принадлежат одной и той же прямой.

Аксиома 7. Ни одна прямая не содержит более трех точек плоскости.


Очевидно, что в данных аксиомах речь идет о точках и прямая на плоскости. На самом деле, если мы отбросим седьмую аксиому, то получим аксиомы, введенные Вебленом и Янгом для «проективной геометрии» на плоскости в их трактате по данному предмету. Читателю вовсе не обязательно что-либо знать о проективной геометрии, для того чтобы понять то, что будет сказано ниже. Чем же являются точки, прямая и плоскости? Читателю может показаться, что он знает, чем они являются. Он способен нарисовать точки и прямые с помощью карандаша и линейки, и, быть может, ему покажется, что в приведенных аксиомах делаются утверждения относительно свойств и отношений таких геометрических сущностей.

Это достаточно сомнительно, ибо свойства нарисованных на бумаге точек могут значительно отличаться от утверждаемых свойств. Однако в любом случае вопрос о том, согласуются ли реальные точки и прямые с тем, что утверждается в аксиомах, является вопросом прикладной, а не чистой математики. Следует отметить, что в самих аксиомах не говорится о том, чем на самом деле являются точки, прямые и т. д. Для того чтобы вывести следствия из данных аксиом, необязательно знать, что именно мы понимаем под терминами «точка», «прямая», «плоскость». Эти аксиомы имплицируют ряд теорем не в силу визуальной репрезентации, которую им может придать читатель, а в силу их логической формы. Точки, прямые и плоскости могут быть какими угодно сущностями, недетерминированными в любом отношении за исключением тех отношений, которые утверждаются в аксиомах.

Давайте поэтому отбросим всякую явную отсылку к точкам, прямым и плоскостям и, тем самым, элиминируем все апелляции к пространственной интуиции при выведении из этих аксиом ряда теорем. Предположим, в таком случае, что вместо слова «плоскость» мы будем использовать букву «S»; а вместо слова «точка» – фразу «элемент S». Очевидно, что если рассматривать плоскость (S) как набор точек (элементов S), то прямая может пониматься как класс точек (элементов), являющийся подклассом точек на плоскости (S). Следовательно, мы заменим слово «прямая» (line) выражением «1-класс». Таким образом, наш исходный набор аксиом обретает следующий вид:


Аксиома 1\'. Если А и В являются различными элементами S, то существует по меньшей мере один 1-класс, содержащий одновременно А и В.

Аксиома 2\'. Если А и В являются различными элементами S, то существует не более одного 1-класса, содержащего одновременно А и В.

Аксиома 3\'. Любые два 1-класса имеют по меньшей мере один общий элемент S.

Аксиома 4\'. В S существует по меньшей мере один 1-класс.

Аксиома 5\'. Каждый 1-класс содержит по меньшей мере три элемента S.

Аксиома 6\'. Все элементы S не принадлежат одному и тому же 1-классу.

Аксиома 7\'. Ни один 1-класс не содержит более трех элементов S.

В данном наборе допущений не делается явной ссылки ни на какую предметную область. Понятия, необходимые для того, чтобы сформулировать данные аксиомы, имеют совершенно общий характер. Идеи класса, подкласса, элементов класса, отношение принадлежности к классу и дополнение к классу, понятие числа – все это фундаментальные элементы аппарата логики. Таким образом, если нам удастся открыть импликации этих аксиом, то это случится не благодаря свойствам пространства как такового. На самом деле ни одна из этих аксиом не может считаться суждением, ни одна из них сама по себе не является истинной или ложной. Сами по себе символы S, 1-класс, А, В и т. д. являются переменными. Каждая из этих переменных обозначает любую сущность из класса возможных сущностей, с единственным условием: эта сущность должна «выполнять» или согласовываться с формальными отношениями, сформулированными в аксиомах. Однако до тех пор, пока символы не наделены специфическим значением, аксиомы являются пропозициональными функциями, а не суждениями [44] .

Наши допущения, таким образом, заключаются в том, что некоторые отношения рассматриваются в качестве существующих между неопределенными терминами. Однако читатель обратит внимание, что, несмотря на то что ни один термин не определен явно, им (терминам), тем не менее, дано имплицитное определение. Они могут обозначать все что угодно, при условии, что это обозначаемое согласуется с отношениями, утверждаемыми относительно них. Данная процедура характеризует современную математическую технику. К примеру, в аксиоматике Евклида явные определения даны точкам, прямым, углам и т. д. В современной трактовке геометрии эти элементы определяются имплицитно посредством аксиом. Такая процедура, как мы сможем убедиться, обусловливает возможность большого числа различных интерпретаций неопределенных терминов, что позволяет проявить тождественность структуры в различных условиях.

Теперь мы докажем шесть теорем, некоторые из которых можно посчитать банальными следствиями наших допущений.


Теорема I. Если А и В являются различными элементами S, то существует один, и только один, 1-класс, содержащий одновременно А и В. Назовем его «1-класс АВ». Это следует из аксиом 1′ и 2′

Теорема II. Любые два отличных друг от друга 1-класса имеют один, и только один, общий элемент S. Это следует из аксиом 2′ и 3′

Теорема III. Существует три элемента S, которые вместе не принадлежат одному 1-классу. Это является непосредственным следствием аксиом 4′ 5′ и 6′

Теорема IV. Каждый 1-класс в S содержит только три элемента S. Это следует из аксиом 5′ и 7′

Теорема V. Любой класс S, выполняющий условия аксиом 1′—6′ включительно, содержит по меньшей мере семь элементов.

Доказательство . Пусть А, В, С – три элемента S , не принадлежащих одному l‑классу . Э то возможно, согласно теореме III. Тогда должно иметься три различных l‑класса , содержащих АВ, ВС и СА , согласно теореме I. Более того, каждый из этих l‑классов должен обладать дополнительным элементом, согласно аксиоме 5′ и эти дополнительные элементы должны быть отличны друг от друга, а также от А, В , С, согласно аксиоме 2′

Пусть эти дополнительные элементы обозначаются как D, Е и G, так чтобы ABD, ВСЕ и CAG формировали три упомянутых различных 1-класса. Тогда АЕ и BG тоже детерминируют 1-классы, которые должны быть отличными от всех упомянутых 1-классов, согласно аксиоме Г. Также они должны обладать одним общим элементом S, согласно аксиоме 4\', который будет отличаться от всех упомянутых элементов, согласно аксиоме 2'. Назовем его «F», так чтобы AEF и BFG были 1-классами.

Следовательно, в S есть по меньшей мере семь элементов.


Теорема VI. Класс S, выполняющий условия всех семи допущений, содержит не более семи элементов.

Доказательство . Допустим, имеется восьмой элемент Т. Тогда 1-класс, детерминируемый с помощью АТ и BFG, должен будет обладать общим элементом. Этим элементом не может быть В, т. к. элементы АВ детерминируют 1-класс, элементами которого являются ABD, так что ABTD должны будут принадлежать этому же 1-классу, что невозможно, согласно аксиоме. Этим элементом не может быть и F, ибо тогда AFTE должны будут принадлежать 1-классу AEF; этим элементом не может быть и G, т. к. тогда AGTC должны будут принадлежать 1-классу AGC; все эти результаты невозможны по той же причине (аксиома 7').

Следовательно, поскольку существование восьмого элемента противоречит аксиоме 7', то такой элемент не может существовать.

Мы представили миниатюрную математическую систему в виде гипотетико-дедуктивной науки. Проведенная дедукция никак не опирается на эксперимент, наблюдение или какие-либо элементы чувств. Читатель смог ощутить вкус чистой математики. Вопрос же о том, соответствует ли что-либо в существующем мире данной системе, требует эмпирического знания. Если окажется так, что нечто ей действительно соответствует, то такая часть реального мира должна обладать тем систематическим характером, который был символически выражен нами выше. При этом верифицировать то, что мир на самом деле содержит подобную структуру, мы сможем лишь в пределах погрешности используемой нами экспериментальной процедуры.

§ 3. Структурная тождественность, или изоморфизм

Теперь мы хотим показать, что абстрактное множество, подобное рассмотренному в предыдущем параграфе, может обладать более чем одной конкретной репрезентацией, и что эти различные репрезентации, являясь крайне непохожими по своему материальному содержанию, будут тождественными относительно логической структуры.

Допустим, существует банк, состоящий из семи партнеров. Чтобы обеспечить себя экспертной информацией относительно различных ценных бумаг, партнеры решают сформировать семь комитетов, каждый из которых будет исследовать отдельную область. При этом они соглашаются, что каждый из партнеров будет председателем одного комитета и что каждый из партнеров будет членом трех, и только трех, комитетов. Ниже приводится таблица комитетов и их членов, где для каждого комитета первый из перечисленных членов является председателем:

Видно, что данная таблица выполняет семь аксиом, если класс S рассматривать как банк, его элементы как партнеров, а 1-классы – как различные комитеты.

Предложим еще одну интерпретацию, которая, на первый взгляд, не имеет ничего общего с уже предложенными примерами. В приведенной ниже фигуре на каждой из семи линий расположено по три точки. Одна из линий согнута. Пусть каждая точка представляет элемент S, а каждое множество из трех точек, лежащих на одной линии, представляет 1-класс. Тогда выполняются все семь допущений.

Данная геометрическая модель является примером тех же формальных отношений, что присутствуют и в наборе чисел, и в таблице банковских комитетов, которую мы уже рассмотрели. Третья репрезентация находится на с. 214.


Рассмотрим три данные репрезентации. Мы обнаруживаем, что, во-первых, мы можем сопоставить один к одному каждый из элементов одной интерпретации с элементами других двух. Во-вторых, каждое отношение между элементами в одной интерпретации соответствует отношению с теми же логическими свойствами между соответствующими элементами других двух интерпретаций. Так, например, элемент 0 из нумерической интерпретации может быть сопоставлен с точкой А в геометрической интерпретации, а также с мистером Адамсом из банковской конторы; элемент 1 соответствует точке В, а также мистеру Брауну и т. д. А трехместное отношение между числами 0, 1, 3 (с. 218), в силу которого они принадлежат одной и той же группе, соответствует отношению между точками ABD, в силу которого они лежат на одной линии, а также отношению между Адамсом, Брауном и Смитом, в силу которого они находятся в одном комитете и т. д.

Две или более системы, связанные подобным отношением, называются изоморфными , или обладающими тождественной структурой или формой . Теперь мы можем предложить общее определение термину «изоморфизм» . Даны два класса: S с элементами a, b, c … и S′ с элементами a , b , c ′…; допустим, что элементы S могут быть взаимно однозначно сопоставлены с элементами S ′, так что, например, а соответствует а ′, b соответствует b ′ и т. д. Тогда, если для каждого отношения R между элементами S (таким, что, например, aRb ) существует отношение R ′ между соответствующими элементами S ′ ( a R b ′), то данные два класса являются изоморфными .

На данном этапе мы достаточно подготовлены для того, чтобы усвоить огромную важность математического метода как инструмента естественных наук. Во-первых, гипотеза, или набор допущений, может изучаться на предмет ее импликаций без постановки вопросов материальной истинности или ложности. Данное обстоятельство важно для понимания того, какие обязательства мы принимаем, соглашаясь с такой гипотезой. Во-вторых, абстрактно сформулированная гипотеза может обусловить более чем одну конкретную репрезентацию. Следовательно, изучая чистую математику, мы изучаем возможные структуры многих конкретных ситуаций. Тем самым мы обнаруживаем тот неизменный, или инвариантный фактор, присутствующий в ситуациях, которые по-разному ощущаются и претерпевают изменения. Наука иногда определяется как поиск системы (порядка или постоянства) среди непохожести и изменения. Идея изоморфизма является наиболее ясным выражением того, что имеется в виду под подобной системой.

Некоторые примеры изоморфизма хорошо известны. Обычная карта является полезным инструментом, поскольку отношения между изображенными на ней точками имеют структуру, тождественную отношениям между пунктами на местности, которой соответствует карта. В физике мы можем наблюдать, как формула обратных квадратов применяется относительно электрического притяжения и отталкивания, равно как и относительно гравитационной силы. Это возможно потому, что данные различные предметные области обладают тождественной формальной структурой в отношении исследуемых свойств. Физика также обнаруживает, что этот же набор принципов применим относительно движения планет, падения слезинки и колебания маятника. Именно обнаруживаемый в различных предметных областях изоморфизм обусловливает современную теоретическую науку. Элементарное изображение «словаря» по переводу теорем евклидовой геометрии в теоремы неевклидовой геометрии можно найти в книге А. Пуанкаре «Основания науки». С абстрактной точки зрения эти разные геометрии обладают тождественной структурой.

Следует отметить, что две системы могут не обладать структурами, тождественными на всем их масштабе, но при этом иметь общие свойства. Евклидовы и неевклидовы геометрии обладают многими общими теоремами, и в то же время некоторые теоремы одной системы формально несовместимы с некоторыми теоремами другой системы. Из сказанного следует, что целиком две системы могут быть несовместимыми друг с другом, но при этом обладать общей подсистемой. Это можно проиллюстрировать следующим образом. Рассмотрим систему, детерминируемую аксиомами 1′—7′ Рассмотрим также систему, получаемую при замене 7′ на допущение 7′′ ни один l‑класс не содержит более четырех элементов S . Данные две системы не являются изоморфными, что видно из сравнения репрезентации первой системы (с. 218) с репрезентацией второй системы (с. 220). Тем не менее, все теоремы в обеих системах, выводимые из первых шести аксиом, будут одними и теми же. Система, детерминируемая аксиомами 1′—6′, таким образом, является общей подсистемой для несовместимых систем, детерминируемых аксиомами 1′—7′ с одной стороны, и аксиомами 1′—7′′—с другой.

Проведенное наблюдение имеет большую важность. Исследования в естественных науках зачастую подталкивают нас к мнению, что теория является истинной, потому что некоторое следствие этой теории было подтверждено. Тем не менее, точно такое же следствие может быть выведено и из альтернативной теории, несовместимой с данной. Поэтому мы не можем обоснованно утверждать истинность ни одной из двух теорий. Однако, будучи достаточно внимательными, мы можем обнаружить те допущения, которые являются общими для обеих теорий и на которые опираются тождественные следствия. Тогда можно будет установить также и то, какие из допущений, в силу которых данные теории являются разными, не согласуются с экспериментальными данными.

В отношении дедуктивных систем следует сделать еще одно замечание. Любая система по необходимости является абстрактной: она представляет структуру некоторых отдельных отношений и поэтому в ней не должны учитываться какие-либо другие отношения. Поэтому системы, изучаемые в физике, не включают в себя системы, исследуемые в биологии. Более того, как мы уже могли убедиться, система является дедуктивной не в силу какого-либо конкретного значения ее терминов, а в силу универсальных отношений между ними. Специфическое качество вещей, на которые могут указывать термины, само по себе не играет никакой роли в системе. Так, в теории теплоты не учитываются уникальные чувственные качества, демонстрируемые явлениями теплоты. Дедуктивная система, таким образом, является абстрактной вдвойне: она абстрагируется от специфических качеств предметной области, а также выбирает одни отношения и пренебрегает другими. Из этого следует, что различных систем может быть очень много, и каждая из них может быть исследована отдельно от остальных. Не исключено, что такая множественность систем может конституировать множество подсистем, относящихся к одной всеобъемлющей системе. Однако у нас недостаточно оснований, чтобы считать, что такая всеобъемлющая система на самом деле имеет место. В любом случае, для адекватного исследования любой из менее содержательных систем знания такой всеобъемлющей системы не требуется. Выходит, что человеческое знание о естественном мире возможно только потому, что естественный мир можно исследовать с помощью множества относительно автономных систем.

§ 4. Эквивалентность наборов аксиом

Мы уже сказали, что в любой дедуктивной системе некоторые суждения являются недоказуемыми в этой системе и что некоторые термины являются неопределимыми. Также мы сказали, что суждение, являющееся аксиомой в одной системе, может быть теоремой в другой. Теперь мы хотим проиллюстрировать сказанное.

Рассмотрим нижеследующие допущения относительно класса S ; его элементы: A, B, C и т. д., его l‑классы (или l‑подклассы ): a, b, c и т. д.


Аксиома 1′′′. Если a и b являются различными l‑классами S , то существует по меньшей мере один элемент S , принадлежащий a и b .

Аксиома 2′′′. Если a и b являются различными l‑классами S , то существует не более одного элемента S , принадлежащего а и b .

Аксиома 3′′′. Любые два элемента S являются элементами некоторого одного l‑класса S .

Аксиома 4′′′. Существует по меньшей мере один элемент S .

Аксиома 5′′′. Каждый элемент S принадлежит по меньшей мере к трем l‑классам S .

Аксиома 6′′′. Не существует элемента S , принадлежащего всем l‑классам S .

Аксиома 7′′′. Не существует элемента S , который принадлежал бы более чем к трем l‑классам S .

Ни одна из этих аксиом не тождественна какой-либо аксиоме из предшествующего набора аксиом, хотя некоторые новые аксиомы тождественны (не считая их вербальной формы) некоторым теоремам, доказанным нами ранее. Так, аксиома 3′′′ тождественна теореме I, а аксиома 4′′′– части теоремы III. Тем не менее, предыдущий набор аксиом и данный набор аксиом характеризуют одну и ту же систему отношений. Эти два множества являются эквивалентными. Два набора постулатов эквивалентны, если, и только если, каждый постулат из первого набора является либо постулатом, либо теоремой из второго набора и каждый постулат из второго набора является либо постулатом, либо теоремой из первого. Эквивалентность двух вышеприведенных наборов постулатов может быть показана посредством выведения из первого набора тех постулатов второго набора, которые еще не были доказаны, и выведения из второго набора всех постулатов первого. Так, аксиома 1′следует из аксиомы 3′′′ аксиома 5′следует из аксиом 1′′′—5′′′ и т. д.

Читателю важно усвоить то, что не существует недоказуемых по своей природе суждений. Неспособность осознать данное обстоятельство является причиной убежденности в существовании «самоочевидно истинных» суждений. Несложно стать жертвой ошибочного предубеждения о том, что суждение является недоказуемым, если его нельзя доказать на одном наборе допущений. Более того, тот факт, что две системы могут быть эквивалентными и при этом не быть тождественными, проливает свет на вопрос о логическом предшествовании. В одной системе некоторое суждение логически предшествует другому, если требуется, чтобы первое суждение было посылкой или частью посылки для получения второго. Однако в другой системе отношение логического предшествования между двумя суждениями может быть обратным.

Сказанное относительно недоказанных суждений в равной степени применимо и к терминам, которые не определены. Из курса школьной геометрии читатель помнит, что точки рассматривались как фундаментальные и неопределяемые понятия, в терминах которых определялись линии и окружности. При попытке дать определение какому-либо термину становится ясно, что должны быть и неопределяемые термины. Термин «равные расстояния» можно определить следующим образом: расстояние между точками А и Б на прямой равно расстоянию между Си Д если отрезок АВ может быть перемещен как твердое тело, так чтобы он совпал с отрезком CD. Однако очевидно, что фраза «перемещение отрезка как твердого тела» не может быть определена с помощью термина «равные расстояния», ибо это приведет к кругу в определении. Тем не менее, ошибочно считать, что существуют недоказуемые по своей природе термины. Недоказуемость и неопределимость являются таковыми относительно той или иной системы. Вовсе не обязательно рассматривать точки как недоказуемые, поскольку в качестве недоказуемых мы можем выбрать и другие термины, например линии, и определять точки уже на их основе. Так, для евклидовой геометрии были выработаны различные аксиоматические основания. Гильберт обнаружил набор из двадцати одного допущения и пяти простых или неопределяемых идей, на основе которых выводимы все теоремы геометрии. Веблен, с другой стороны, открыл двенадцать допущений, требующих лишь двух неопределяемых терминов, для решения той же самой задачи. Мы не можем далее исследовать эту тему и отметим только то, что число неопределяемых терминов тесно связано с числом и характером недоказуемых суждений.

§ 5. Независимость и непротиворечивость аксиом

Теперь нам необходимо рассмотреть вопросы, связанные с набором аксиом. Каковы существенные и желательные свойства, которыми должен обладать набор аксиом?

1. Аксиомы исследуются с учетом имплицируемых ими суждений. Следовательно, продуктивность является одним из свойств, которыми должны обладать аксиомы. Это означает, что аксиомы должны имплицировать много теорем. Однако не существует критерия, согласно которому набор допущений должен порождать всеобъемлющий набор теорем. Вероятнее всего продуктивность не является характеристикой, внутренне присущей набору аксиом. Однако она отражает способность мыслящего человека обнаруживать их импликации. Более того, важность набора допущений пропорциональна нашей способности отыскивать его интерпретации в исследованиях, проводимых в естественных науках или других областях математики. Ниже мы еще вернемся к этой теме.

2. Весьма желательным и исторически значимым свойством аксиом является их независимость. Набор допущений является независимым, если невозможно вывести какую-либо из аксиом из других. Если набор аксиом является независимым, то в данной системе возможно провести четкое различие между допущениями и теоремами. И до тех пор, пока мы не знаем, что имеем дело с независимыми суждениями, мы не способны сказать, имеем ли мы дело с различными и альтернативными возможностями или же просто с одной и той же возможностью, выраженной в другой форме.

Вопрос о том, являются ли аксиомы и постулаты Евклида независимыми, представляет большой исторический интерес. Многие величайшие открытия в математике, физике и философии были обусловлены многочисленными попытками дать ответ на этот вопрос. Как мы уже сказали в предыдущем параграфе, математики на протяжении более чем двух тысяч лет старались вывести параллельные постулаты из других допущений Евклида. Основой для этих попыток была убежденность в том, что все его допущения, за исключением допущения о параллельных прямых, были «самоочевидно истинными». Они считали недостатком то, что несамоочевидное суждение принималось в качестве аксиомы. Им не удалось вывести пятый постулат Евклида из других его постулатов без введения дополнительных допущений, не включенных в изначальный набор аксиом Евклида. Однако что же было доказано этой неудачей? Разве то, что пятый постулат не может быть выведен из остальных? Разумеется, нет. Однако факт этой неудачи заставил исследователей задуматься о ее причинах. Это привело к тому, что некоторые математики стали искать доказательство тому, что пятый постулат независим от остальных постулатов.

В результате такое доказательство было открыто. Мы видели, что доказательство состоит из указания на то, что определенные аксиомы имплицируют определенные теоремы. Мы отрицаем наличие такой импликации, если мы можем показать, как данные теоремы могут быть ложными при истинности аксиом. Развив возможную геометрическую систему, в которой отрицается пятый постулат Евклида, тогда как остальные аксиомы сохраняются, Лобачевский смог показать, что пятый постулат не может быть логическим следствием остальных аксиом. Нам еще предстоит увидеть, что это доказательство иллюстрирует форму логического принципа, который мы рассматривали, когда обсуждали несовместимую триаду. Если из набора (непротиворечивых) суждений Р имплицируется другое суждение Q, то суждения из набора Р и суждение, противоречащее (или противоположное) Q, будут несовместимы друг с другом. Если в наборе аксиом обнаруживается несовместимость, выражающаяся двумя несовместимыми суждениями, то задача выполнена: Q не является независимым от Р. Если в наборе аксиом несовместимость не проявляется, то тогда возможно обоснованно вывести одну или более теорем, которые будут противоречить либо некоторым аксиомам, либо некоторым теоремам, также обоснованно выведенным. С другой стороны, если Р не имплицирует Q, то набор суждений Р и суждение, противоречащее Q, вместе сформируют непротиворечивый набор, в котором никогда нельзя будет отыскать противоречие [45] .

Резюмируем сущность одного из типов неевклидовой геометрии. Пятый постулат Евклида эквивалентен допущению о том, что через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной. В геометрии Лобачевского данное допущение заменено допущением о том, что через точку, не лежащую на данной прямой, можно провести более чем одну прямую, параллельную данной. Из этого допущения, а также других допущений Евклида можно получить целую совокупность теорем, некоторые из которых будут тождественными теоремам Евклида, тогда как иные будут им противоречить. Так, суждения «углы у основания равнобедренного треугольника равны» и «две прямые, параллельные третьей, параллельны друг другу» для Евклида и Лобачевского являются общими. С другой стороны, суждения «сумма углов треугольника равна двум прямым углам» и «площадь окружности равна кг2» верны только в системе Евклида.

3. На данном этапе читатель может возразить: «Я все еще не вижу, чтобы было доказано, что пятый постулат является независимым от остальных. Вы показали, что, допустив постулат, противоречащий данному, можно получить совокупность теорем, отличающихся от теорем Евклида. Но вы еще не показали, что этот новый набор постулатов является непротиворечивым. И до тех пор, пока вы этого не сделаете, у вас не будет достаточно оснований, чтобы считать, что неевклидова геометрия действительно возможна».

Это вполне верно. Тот факт, что после того как любое конечное число теорем выведено из неевклидового набора допущений, не было встречено никаких противоречий, еще ничего не доказывает относительно непротиворечивости этого набора. Противоречие вполне может появиться после того, как будет получено большее количество теорем. Такое же возражение может быть приведено безотносительно количества выведенных теорем. Возражение читателя демонстрирует, насколько тесно связаны проблемы независимости и непротиворечивости в случае с набором суждений.

Мы, в свою очередь, также можем задать читателю вопрос. «Вы полагаете, что непротиворечивость неевклидовых геометрий не была доказана и что поскольку такого доказательства приведено не было, то сама их возможность поставлена под вопрос. Однако на каком основании вы считаете, что сама евклидова геометрия является непротиворечивой? Разумеется, верно то, что после двух тысяч лет ее изучения математики не обнаружили в ней каких-либо противоречий. Однако вы, конечно, не примете это в качестве доказательства. Поэтому в этом отношении, похоже, евклидова геометрия и неевклидовы геометрии находятся в одинаковом положении».

Попробуем разрешить затруднение читателя, еще раз обратившись к нашей миниатюрной математической системе и рассмотрев на ее примере эти же проблемы. Являются ли семь аксиом независимыми? Совместимы ли они друг с другом?

Математики обнаружили лишь один способ ответить на последний вопрос. Этот способ заключается в обнаружении набора сущностей, которые будут олицетворять отношения нашего набора абстрактных аксиом. При допущении о том, что эти сущности сами по себе не подвержены противоречию и что они на самом деле в полном смысле олицетворяют аксиомы, можно показать, что аксиомы также являются непротиворечивыми.

Проиллюстрируем то, как данный метод используется. Пусть числа от 0 до 6 включительно будут формировать различные группы по три числа в каждой нижеследующим образом:


Теперь рассмотрим эти семь чисел как элементы класса S. Тогда каждый столбец чисел будет представлять 1-класс. Несложный анализ показывает, что при такой интерпретации каждая из семи аксиом подтверждается на нашем наборе. Следовательно, аксиомы являются непротиворечивыми.

При этом следует подчеркнуть, что данный способ лишь отодвигает затруднение. Ведь все еще остается вопрос о том, является ли непротиворечивым данный набор сущностей, а также наш метод интерпретации. На этот вопрос в данное время полностью удовлетворительного ответа нет. Однако у нас есть определенная уверенность в том, что поскольку аксиомы Евклида позволили нам столь адекватно обращаться со свойствами и отношениями физических тел, то евклидова геометрия, как логическая система, также непротиворечива, поскольку мы полагаем, что ничто, находящееся в пространстве и времени, не может быть самопротиворечивым. Поскольку было показано, что неевклидовы геометрии сопоставимы (элемент к элементу) с евклидовой геометрией в соответствии с формулами определенной трансформации, следовательно, если в неевклидовой геометрии будет обнаружено противоречие, то соответствующее противоречие с необходимостью будет иметь место и в евклидовой геометрии [46] .

Обратимся еще раз к проблеме независимости аксиом и проиллюстрируем нашу проблему посредством нашей миниатюрной системы. Зависит ли аксиома 7\' от остальных аксиом? Ответ будет положительным, если первые шесть аксиом вместе с любым допущением, несовместимым с седьмой аксиомой, формируют непротиворечивое множество. Данное условие эквивалентно отысканию интерпретации, которая будет выполнять первые шесть аксиом и не будет выполнять седьмую. Такую интерпретацию можно дать несколькими способами, одним из которых является следующий:


Данные тринадцать чисел от 0 до 12 включительно являются членами S. Каждый столбец из четырех чисел представляет 1-класс, принадлежащий S. На поверку оказывается, что выполняются все аксиомы, кроме седьмой. Следовательно, данная аксиома независима от остальных шести. Сходным образом мы можем показать, что любое другое допущение независимо от остальных.

§ 6. Математическая индукция

«Но не забываете ли вы, что в математике также имеет место индукция?» – может возразить читатель. «Вы описывали математику как типичную дедуктивную науку, в которой все теоремы являются необходимыми следствиями аксиом. Однако вы ведь не упустите из вида такой метод доказательства, как математическая индукция?».

Читатель, без сомнения, находится в ловушке слов. Действительно, существует метод математической индукции, однако это название не вполне удачно, поскольку подразумевает некое сходство с методом проведения экспериментов и подтверждения гипотез, использующимся в естественных науках. Однако такого сходства на самом деле нет, а математическая индукция является чисто доказательным методом.

Однако следует ли еще раз предостерегать читателя от распространенной ошибки спутывания временного порядка, в котором мы обнаруживаем те или иные суждения науки, и порядка их логической зависимости? Любой, кто когда-либо решал задачу по геометрии, знает, что существует подготовительная «стадия прощупывания», во время которой мы строим догадки, размышляем, строим вспомогательные линии и т. д. до тех пор, пока мы, как говорится, не наткнемся на доказательство. При этом никто не станет спутывать данную предварительную стадию, какой бы существенной она ни была, с достигаемым в итоге доказательством. Такая начальная стадия «прощупывания», действительно, обладает большим сходством с тем, как люди осуществляют исследования в какой бы то ни было сфере. Процесс проверки путем догадок характерен и для математического исследования, так же как и для исследования в естественных науках.

Принцип математической индукции может быть сформулирован следующим образом: если некоторое свойство принадлежит числу 1 и если, когда оно принадлежит числу п, можно доказать, что оно принадлежит и п + 1, то оно принадлежит всем числам. Докажем с помощью данного принципа следующую теорему для всех целочисленных значений п:

1 + 3 + 5 + 7 +… (2п – 1) = n2.

Очевидно, что это истинно для rt = 1. Теперь покажем, что, если то же самое имеет место и для числа п, то оно имеет место и для (п + 1).

a. 1 + 3 + 5 +… (2 n – 1) = n2.

Прибавив (2 n – 1) + 2 или (2 n + 1) к обеим сторонам уравнения, мы получим:

b. 1 + 3 + 5 +… (2 n – 1) + (2 n + 1) = n2 + (2 n + 1) = (n +1)2.

Однако Ь имеет ту же форму, что и а. Таким образом, мы показали, что если теорема истинна для числа п, то она истинна и для (n + 1). Она истинна для n = 1. Следовательно, она истинна для n = 1 + 1, т. е. для 2; следовательно, она истинна для n = 2 + 1, т. е. для 3, и т. д. для каждого целого числа, которого можно достигнуть путем последовательного прибавления 1. Таким образом, получившееся доказательство является абсолютно строгим, дедуктивным и всецело формальным. В нем нет никакой апелляции к эксперименту. А принцип математической индукции, как показывают современные исследователи, является частью самого значения конечных, или «индуктивных», чисел.

§ 7. Роль обобщения в математике

В предыдущей главе мы обратили внимание на изменение в значении слов в процессе обобщения. В математике подобный процесс также имеет место и чаще всего связан с тем, что называется «современным обобщением числа». Несложно впасть в ошибку относительно того, что подразумевается под «числом», когда речь идет о его обобщении. Рассмотрим данный вопрос подробнее.

Слово «число» изначально распространялось только на целые числа (1, 2, 3 и т. д.). При таком понимании числа можно складывать и умножать, а в некоторых случаях вычитать и делить. Абстрактная природа целых чисел может быть выражена посредством набора суждений, указывающих на то, какие операции могут проводиться в отношении суждений и в каких отношениях эти операции состоят друг к другу. Например, ниже приведены некоторые из абстрактных свойств целых чисел:

a + b = b + a ,

( a + b ) + c = a + ( b + c ),

a × b = b × a,

a × ( b + c ) = a × b + a × c.


Операции, являющиеся инверсными относительно умножения и сложения, могут быть проведены над некоторыми из целых чисел. Так, 4 × 3 = 12; следовательно, существует целое число х, такое, что х × 3 = 12: такое число х – частное, получающееся в результате деления 12 на 3. Однако если мы не расширим наше понятие числа, инверсная операция деления не всегда может быть осуществима. Так, не существует целого числа такого, что х × 3 = 5. Следовательно, для того чтобы не было исключений в случае с делением, были введены дроби. Их тоже назвали числами, тем самым область чисел была расширена в интересах непрерывности и общности.

Это был первый пример обобщения понятия числа. Почему дроби так же стали понимать, как числа? Ответ прост, хотя и был найден совсем недавно. Дело в том, что над ними можно было проводить операции сложения, умножения и даже деления, а также потому, что формальные отношения целых чисел друг к другу в том, что касается этих операций, являются теми же самыми, что и формальные отношения между дробями. Иными словами, целые числа и дроби образуют изоморфные системы.

При этом следует отметить, что в то время как сложение и умножение целых чисел формально такое же и для дробей, тем не менее, нельзя отрицать и имеющиеся различия. Так, знак «+» в «7 + 5 = 12» и в «½+ ⅓= ⅚», обозначая формальные свойства, общие для обоих случаев, тем не менее, обозначает две различные и отличимые друг от друга операции. Вторая операция гораздо сложнее первой. Их легко спутать, поскольку они обозначаются одним и тем же символом, однако нам также не следует забывать и о том, что один и тот же символ применим к обоим случаям, потому что они обладают общими процедурными элементами.

Позднее были открыты и другие числа, когда было замечено, что некоторые из ранее введенных чисел обладали квадратными корнями, кубическими корнями и т. д., а некоторые нет. Так, пифагорейцы доказали, что диагональ квадрата несоизмерима с его сторонами. В современной записи это означает, что V2 не выразим как отношение двух целых чисел. Однако почему операция по получению корня должна быть допустимой для определенных чисел (например, для 4)? Почему бы не разрешить проведение этой операции надо всеми числами? Следовательно, в интересах непрерывности подхода и общности были открыты иррациональные числа, и их также стали рассматривать как вид чисел.

Почему? Ответ опять же прост: потому что операции с ними обладают такими же формальными свойствами, как и операции с целыми числами и дробями.

Сходные замечания, лишь с некоторыми уточнениями, были сформулированы и для других «видов чисел», с которыми имеет дело современная математика. Отрицательные числа, мнимые числа, кватернионы, трансцендентальные числа, матрицы были также введены в область чисел, поскольку того требовали непрерывность и универсальность подхода. Однако как «числа» они были обозначены потому, что обладали некоторыми абстрактными свойствами с более знакомыми примерами математических сущностей.

Обобщенность рассмотрения, таким образом, является очевидной целью математики. Однако при этом, разумеется, неверно считать, что определение термина «число», применимое, в частности, к кардинальным числам 1, 2, 3 и т. д., было в некотором смысле «расширено» или «обобщено», с тем чтобы применяться к дробным, иррациональным и остальным числам. Видового определения термина «число», относительно которого кардинальные, ординальные, дробные и прочие числа являлись бы лишь отдельными примерами, не существует. Единственный способ дать такое определение – это только в терминах формальных свойств определенных операций. Все эти сущности называются «числами» лишь в силу постоянства и инвариантности этих формальных свойств.

Данное заключение, представляющееся столь очевидным, если его сформулировать, было достигнуто лишь в силу огромных усилий современных философов и математиков. Источником многих заблуждений здесь является частое использование одного и того же символа для обозначения двух существенно разных идей. Так, кардинальное число 2 и дробь 2Л зачастую обозначаются одним символом «2». При этом они обозначают радикально разные идеи. Однако данная опасность, исходящая из математической системы символов, несомненно, перевешивается теми великими преимуществами, которые она предлагает. Она позволяет нам кратко выражать структуру математических суждений и тем самым позволяет нам отмечать точные аналогии, или изоморфизмы, в контекстах, отличающихся друг от друга во всех остальных отношениях.

Глава VIII. Вероятностный вывод