Введение в логику и научный метод — страница 18 из 51

§ 1. Природа вероятностного вывода

В обыденном словоупотреблении термин «вероятность» используется весьма свободно, тогда как в логической теории правильный анализ природы вероятностного вывода – это одна из наиболее обсуждаемых тем. Тем не менее, мы строим планы относительно рождения детей, свадеб, смерти, праздников, коммерческих инициатив, дружбы и образования, опираясь на рациональные основания, весомость которых может рассматриваться как вероятностная, но не окончательная. «Вероятность», как замечал епископ Батлер, «является подлинным проводником по жизни». Поэтому данный вопрос следует рассмотреть более детально. Читателю будет легче, если он вспомнит определение вероятностного (правдоподобного) умозаключения, приведенного в вводной главе. Это определение может служить нитью Ариадны в лабиринте долгих обсуждений. Мы сказали, что вывод (или умозаключение) является вероятностным, если он принадлежит классу аргументов таких, в которых заключения являются истинными с определенной относительной частотой при истинности посылок.

Нижеследующее происшествие случилось в повести Вольтера «Задиг»:

Однажды, когда Задиг прогуливался по опушке рощицы, к нему подбежал евнух царицы, которого сопровождали еще несколько дворцовых служителей. Все они, видимо, находились в сильной тревоге и метались взад и вперед, словно искали потерянную ими драгоценную вещь.

– Молодой человек, – сказал ему первый евнух, – не видели ли вы кобеля царицы?

– То есть суку, а не кобеля, – скромно отвечал Задиг.

– Вы правы, – подтвердил первый евнух.

– Это маленькая болонка, – прибавил Задиг, – она недавно ощенилась, хромает на левую переднюю лапу, и у нее очень длинные уши.

– Значит, вы видели ее? – спросил запыхавшийся первый евнух.

– Нет, – отвечал Задиг, – я никогда не видел ее и даже не знал, что у царицы есть собака.

Как раз в это время, по обычному капризу судьбы, лучшая лошадь царских конюшен вырвалась из рук конюха на лугах Вавилона. Егермейстер и другие придворные гнались за ней с не меньшим волнением, чем первый евнух за собакой. Обратившись к Задигу, егермейстер спросил, не видел ли он царского коня.

– Это конь, – отвечал Задиг, – у которого превосходнейший галоп; он пяти футов ростом, копыта у него очень маленькие, хвост трех с половиной футов длины, бляхи на его удилах из золота в двадцать три карата, подковы из серебра в одиннадцать денье.

– Куда он поскакал? По какой дороге? – спросил егермейстер.

– Я его не видел, – отвечал Задиг, – и даже никогда не слыхал о нем.

Егермейстер и первый евнух, убежденные, что Задиг украл и лошадь царя, и собаку царицы, притащили его в собрание великого Дестерхама, где присудили к наказанию кнутом и к пожизненной ссылке в Сибирь. Едва этот приговор был вынесен, как нашлись и собака, и лошадь. Судьи были поставлены перед печальной необходимостью пересмотреть приговор; но они присудили Задига к уплате четырехсот унций золота за то, что он сказал, будто не видел того, что на самом деле видел.

Задигу пришлось сперва уплатить штраф, а потом ему уже позволили оправдаться перед советом великого Дестерхама. И он сказал следующее: – Звезды правосудия, бездны познания, зерцала истины, вы, имеющие тяжесть свинца, твердость железа, блеск алмаза и большое сходство с золотом! Так как мне дозволено говорить перед этим высочайшим собранием, я клянусь вам Оромаздом, что никогда не видел ни почтенной собаки царицы, ни священного коня царя царей. Все, что со мной случилось. Я прогуливался по опушке той рощицы, где встретил потом достопочтенного евнуха и прославленного егермейстера. Я увидел на песке следы животного и легко распознал, что их оставила маленькая собачка. По едва приметным длинным бороздкам на песке между следами лап я определил, что это сука, у которой соски свисают до земли, из чего следует, что она недавно ощенилась. Следы, бороздившие песок по бокам от передних лап, говорили о том, что у нее очень длинные уши, а так как я заметил, что след одной лапы везде менее глубок, чем следы остальных трех, то догадался, что собака нашей августейшей государыни немного хромает, если я смею так выразиться. Что же касается коня царя царей, то знайте, что, прогуливаясь по дорогам этой рощи, я заметил следы лошадиных подков, которые все были на равном расстоянии друг от друга. Вот, подумал я, лошадь, у которой превосходный галоп. Пыль с деревьев вдоль узкой дороги, шириною не более семи футов, была немного сбита справа и слева, в трех с половиной футах от середины дороги. У этой лошади, подумал я, хвост трех с половиною футов длиной: в своем движении направо и налево он смел эту пыль. Я увидел под деревьями, образующими свод в пять футов высоты, листья, только что опавшие с ветвей, из чего я заключил, что лошадь касалась их и, следовательно, была пяти футов ростом. Я исследовал камень кремневой породы, о который она потерлась удилами, и на этом основании определил, что бляхи на удилах были из золота в двадцать три карата достоинством. Наконец, по отпечаткам подков, оставленным на камнях другой породы, я пришел к заключению, что ее подковы из серебра достоинством в одиннадцать денье [47] .


Данная миниатюрная детективная история хорошо представляет тот способ вывода, который используется в большом количестве практических вопросов и во многих областях научного исследования. Почему мы считаем, что заключения Задига разумно и хорошо обоснованы, хотя их основания не являются абсолютно исчерпывающими?

Аргумент о том, что собачка царицы пробежала мимо, можно сформулировать следующим образом:

1. Данные следы на песке имеют определенную форму. (Это истинное суждение, в котором утверждается наблюдавшийся факт.)

2. Однако если бы мимо проходила маленькая собачка, то ее следы на песке были бы следами именно такой формы.

(Данное суждение выражает общее правило, которое считается истинным.)

3. Следовательно, мимо проходила маленькая собачка. (Данное суждение является выведенным заключением.)


Данный аргумент формально не является обоснованным. Он был бы обоснованным, если бы мы знали не только истинность суждения 2, но и истинность суждения 2\': «если следы данной формы имеются на песке, то их оставила маленькая собачка». (Читатель может самостоятельно заменить в приведенном аргументе суждение 2 на суждение 2\' и убедиться в обоснованности получившегося умозаключения.) Суждение 2\' является конверсным суждением относительно суждения 2. Однако даже если мы знаем, что суждение 2 является истинным, мы не знаем истинностного значения конверсивного ему суждения. Мы, на самом деле, можем знать, что, несмотря на то что маленькие собачки оставляют следы такой формы, схожие с ними следы могли быть получены и в результате иных обстоятельств. Поэтому очевидно, что заключение Задига не следовало из посылок с необходимостью.

Тем не менее, его заключение является крайне правдоподобным или вероятным относительно посылок. Дело в том, что вывод, который он сделал от наблюдавшихся фактов к заключению посредством общего правила, относится к классу умозаключений, в которых количество раз, когда истинные суждения выводятся из истинных посылок, является очень большим относительно общего числа проведения подобных умозаключений. Иными словами, Задиг однажды может ошибиться, умозаключая от суждений, в которых утверждается наличие соответствующих следов на песке, к суждению «здесь проходила маленькая собачка». Однако если ему и другим наблюдателям пришлось бы сделать очень большое количество подобных умозаключений, то правыми они оказывались бы гораздо чаще, чем неправыми.

На данном этапе мы можем изложить суть дела несколько иначе. По той или иной причине Задиг изучает следы на песке. Он способен установить истинность суждения «данные следы на песке имеют определенную форму». Однако у него также есть некоторые основания и для того, чтобы утверждать и следующее суждение: «следы на песке данной формы оставляют (в пропорции r к общему числу появления таких следов) маленькие собачки». Несмотря на то что из данных суждений ничего не следует с необходимостью, Задиг может заключить с вероятностью: «маленькая собачка проходила мимо». Данное заключение является вероятным относительно оснований, поскольку данное заключение оказывается истинным при истинности посылок в пропорции r к общему числу осуществления подобных умозаключений. В любом из случаев осуществления данного вывода заключение (выводимый факт) может оказаться ложным, даже если посылка является истинной. Однако если последовательно проводить подобные умозаключения, то можно будет получать истинные заключения с относительной частотой r , которую иногда можно высчитать. Нумерическое значение r можно получить не всегда, и в таких случаях нам приходится довольствоваться только приблизительными догадками относительно величины r . Однако хотя основания для нашей приблизительной оценки величины могут быть ненадежными, значение нашего суждения относительно вероятности ясно. Когда r равняется нулю, аргумент ничего не стоит; когда r равняется 1, умозаключение является обоснованным исчерпывающим образом; когда r равняется ½

Рассмотрим теперь вероятность гипотез. Наблюдения за намагниченными железными прутьями, иголками, гвоздями и т. п. показывают, что магниты обладают двумя противоположными полюсами, такими, что различные полюса притягивают друг друга, а одинаковые – отталкивают друг друга. Мы также наблюдаем, что металлы намагничиваются по-разному и что лучшие металлические магниты утрачивают свои магнетические свойства с течением времени. Как можно все это объяснить? Один из способов это предположить, что все металлические субстанции состоят из мельчайших частиц, каждая из которых является вечным магнитом с двумя полюсами и способна вращаться вокруг фиксированного центра.

Можно показать, что при определенном расположении данных частиц противоположные полюса будут полностью нейтрализовывать друг друга так, что весь металлический прут не будет проявлять каких-либо магнетических свойств; при этом при ином расположении только некоторые из этих мельчайших частиц будут нейтрализовывать друг друга так, что сам прут будет проявлять магнетические свойства. Изменения в положении этих мелких вечных магнитов и легкость, с которой они вращаются вокруг фиксированных центров, будут объяснять, почему металлический прут обретает или теряет магнетические свойства.

Как мы уже знаем, данная гипотеза о природе магнетизма не может быть доказана указанием на то, что ее следствия согласуются с наблюдением, поскольку другие теории также могут объяснять феномен магнетизма. Более того, мы не можем быть уверенными в том, что не окажется так, что некоторые из логических следствий нашего допущения будут не согласовываться с наблюдаемыми явлениями. Тем не менее, можно сказать, что наше допущение или гипотеза о природе магнетизма является вероятной в том же смысле, в каком вероятными были заключения Задига.

Мы можем придать нашему аргументу знакомую форму гипотетического силлогизма: «Этот, тот, а также и другие металлические прутья проявляют магнетизм при определенных условиях» (истинное суждение, в котором утверждаются наблюдаемые факты). Но «если каждый металл состоит из неразличимых мельчайших вечных магнитов, свободно вращающихся вокруг фиксированной оси, то эти металлы будут проявлять свойства магнетизма при указанных условиях» (общее правило). «Следовательно, каждый металл состоит из вечных магнитов» и т. д. (выведенное заключение). Мы вновь замечаем, что, будучи сформулированным таким образом, данный аргумент не является обоснованным. Тем не менее, заключение является вероятным относительно оснований, предлагаемых посылками, поскольку при последовательном проведении подобных умозаключений данное заключение будет истинным с относительно существенной частотой при истинности посылок.

«Минутку!» – может воскликнуть читатель. «Что вы имеете в виду, когда говорите, что заключение является истинным в определенной пропорции к истинности посылок? Откуда вы можете знать, что заключение когда-либо является истинным? Разве вечные магниты, из которых состоят металлы, не являются мельчайшими и незаметными, и не означает ли это, что установить истинность данного заключения просто невозможно? И в таком случае как мы вообще можем определить относительную частоту истинности данного заключения?»

Ответ на данное возражение основывается на проведении различия между значением суждения и основаниями в пользу его истинности. Значение вероятности может, в общем, быть определенным, даже если в ряде случаев мы не имеем достаточно оснований для установления его нумерической величины. Затруднение, о котором говорится в данном возражении, можно усмотреть и в других областях. Так, например, ответ на вопрос о том, чем является сфера, может и должен быть получен независимо и непосредственно перед тем, как в конкретном случае можно будет установить, является ли рассматриваемый объект сферой.

Анализ правдоподобия суждений, истинность которых не может быть верифицирована непосредственным образом, является гораздо более сложной задачей, чем мы до сих пор говорили. В подобных случаях аргумент зависит от того обстоятельства, что сама теория в качестве своих логических следствий имеет суждения, истинность которых может быть верифицирована непосредственным образом и которые приводят к наблюдению явлений, отличных от тех, которые теория изначально постулирует. Как мы увидим в одной из последующих глав, основания для правдоподобия теории состоят из выборки, сделанной на основе всех необходимых следствий данной теории. В случае рассматриваемого нами примера теория о том, что все металлы состоят из мельчайших вечных магнитов, помимо прочих, имеет одно следствие, заключающееся в том, что ковка или разогрев магнита способствует потере им магнетических свойств, и этот выведенный факт является непосредственно наблюдаемым. Таким образом, более полная форма данного аргумента может быть выражена так: «Этот, тот и прочие металлы демонстрируют магнетические свойства при определенных условиях» (наблюдаемый факт); однако «если эти металлы состоят из мельчайших вечных магнитов и т. д., то они проявляют магнетические свойства при указанных условиях» (общее правило); «следовательно, каждый металл состоит из вечных магнитов» и т. д. (выведенный факт, или теория, не доступная для непосредственной верификации). Однако если металлические прутья состоят из вечных магнитов, то тогда ковка или разогрев намагниченной иголки будет способствовать потере ею магнетических свойств (выведенный факт, верифицируемый непосредственным образом). Цель такой дедуктивной разработки данной теории заключается в том, чтобы снабдить ее как можно большим числом верифицируемых следствий. Аргумент в поддержку данной теории начинается с суждений, истинность которых известна, и продвигается к другим суждениям, верифицируемым непосредственным образом, с помощью теории, которая, в свою очередь, непосредственно неверифицируема. Теперь аргумент является более сложным, однако это не изменяет природы используемого вывода. Данная теория правдоподобна относительно оснований, поскольку аргумент в ее поддержку принадлежит классу аргументов, в которых относительная частота коэффициента истинности заключения при истинности посылок не равна с необходимостью 1.

Нам нужно рассмотреть и более сложные примеры умозаключений, называемых правдоподобными (вероятностными). Но прежде чем мы это сделаем, сформулируем в явной форме существенные характеристики вероятностного вывода. Некоторые из этих характеристик мы уже обозначили, другие же будут введены с учетом предстоящей дискуссии.

1. Вероятностный вывод, как любой другой вывод, основывается на некоторых отношениях между суждениями. Ни одно суждение не является с вероятностью истинным само по себе. Истинность суждения является вероятностной относительно других суждений, служащих основаниями для данного суждения.

2. Вопрос о том, обладает ли истинность предложения некоторой степенью вероятности при определенных свидетельствах, не зависит от психического состояния человека, который рассматривает данное суждение. Вопросы вероятности, как и вопросы обоснованности, следует разрешать, исключительно опираясь на объективные соображения, а не на нашу склонность или импульс к тому, чтобы принять то или иное заключение.

3. Вывод является вероятностным только постольку, поскольку он принадлежит к определенному классу выводов, в которых частота истинности выводимого заключения представляет определенный коэффициент относительно частоты истинности посылок. Иными словами, само значение термина «вероятность» подразумевает относительную частоту.

4. Поскольку вероятность истинности суждения не является характеристикой, внутренне присущей суждению, то это же суждение может обладать другой степенью правдоподобия в соответствии с основаниями, предложенными в его поддержку.

5. Основания, предлагаемые в поддержку суждения, могут обладать разной степенью существенности (релевантности). Вообще для истинности суждения выбираются те основания, которые делают коэффициент вероятности как можно более высоким. Однако существенность оснований не может определяться только формальным образом.

6. Поскольку значением измерения правдоподобия суждения является относительная частота, с которой данный тип умозаключения приведет от истинных посылок к истинному заключению, истинным является, как мы увидим, и то, что в большинстве случаев определенное нумерическое значение коэффициента вероятности неизвестно.

По сравнению с количеством случаев, когда мы заключаем, что истинность суждения является вероятностной при определенных основаниях, количество случаев, когда мы можем определить точную нумерическую величину коэффициента вероятности, относительно невелико. Это, однако, не отменяет предложенный нами анализ вероятности, поскольку мы вполне можем понять, в чем заключается ее общий смысл, не обладая при этом точными основаниями, опираясь на которые можно было бы установить ее нумерическое значение.

§ 2. Математика, или исчисление, вероятности

Современное изучение вероятности началось, когда шевалье де-Мере, известный картежник XVII века, поинтересовался у своего друга, праведного Паскаля, как лучше делать ставки при игре в кости. С тех пор основное количество дискуссий относительно вероятности посвящено вопросам, на которые можно дать ответ в нумерической форме: какова вероятность выпадения решки три раза из четырех бросков? Какова вероятность выпадения на костях семерки при одном броске? Такого рода проблемы, равно как и более сложные, исследовались математиками. На сегодняшний день практически в каждой области физики и в некоторых областях химии и биологии требуется использование исчисления вероятности. Мы же подробно исследуем более простые вопросы вероятности и поговорим о том, чем ограничивается математический подход.

Начнем с ограничений. Математика – это дисциплина, изучающая необходимые следствия из любого множества допущений. При таком понимании математика не имеет дела с истинностью или ложностью тех оснований, следствия которых она изучает. В этом отношении логика и математика неразличимы.

Из сказанного следует, что ни одна чисто математическая теория не может определить степень вероятности истинности любого суждения, которое связано с конкретными положениями дел. Она может определить вероятность истинности суждения, когда в явной форме предложены определенные допущения относительно этого суждения. Математика может показать нам, каковы необходимые следствия этих допущений, но она не может определить истинность или ложность самих этих допущений. Следовательно, теория вероятности может быть чисто математической, только если она ограничивается вопросами необходимого вывода. Это имеет место, если рассматривать теорию вероятности как часть чистой математики. Мы коротко рассмотрим элементарные теоремы этой теории потому, что такой подход уже стал традиционным, а также потому, что в использовании теорем исчисления вероятности проявляется природа научного метода.

Начнем с очень простой задачи. Что понимается под «математической вероятностью» выпадения орла при бросании монеты? Воспользуемся общепринятой терминологией. Вместо того чтобы говорить о вероятности истинности суждения «эта монета упадет орлом вверх», мы будем говорить о вероятности события выпадения орла. «Орлом» и «решкой» называются возможные события, или возможные альтернативы. Если мы заинтересованы в выпадении орла, то орел считается благоприятным событием, все остальные события – неблагоприятные. Математическая вероятность определяется в таком случае как отношение, в котором числителем является количество возможных благоприятных событий, а знаменателем – общее количество возможных событий (т. е. сумма благоприятных и неблагоприятных событий), с учетом того что все возможные события равновероятны. Таким образом, если монета имеет 2 стороны и может упасть только на них, демонстрируя тем самым орла или решку, и если выпадение сторон равновероятно, то вероятность выпадения орла будет ½ Вообще если f – число благоприятных событий, а u – число неблагоприятных событий, и если события являются равновероятными, то вероятность благоприятного события определяется как f / ( f + u ). Очевидно, что такая дробь всегда будет правильной и что ее значением будут величины от 0 до 1 включительно.

Вероятность, равная 0, означает, что событие невозможно; вероятность, равная 1, означает, что оно произойдет с необходимостью.

Условие равновероятности событий имеет фундаментальную важность, но дать ему определение крайне сложно. Данное условие становилось источником серьезных ошибок, некоторые из которых мы рассмотрим ниже. В общем смысле, речь идет о том, что одно возможное событие должно происходить так же часто, как и другое. При этом нередко считается, что два события являются равновероятными, если мы не знаем причины, почему должно произойти одно из них, а не другое. Тем не менее, какими бы ни были сложности в установлении равновероятности набора возможных событий, поиск критериев равновероятности не входит в задачу математика, поскольку математик имеет дело с необходимыми следствиями такого допущения, безотносительно того, истинно оно или нет. Важность этого условия станет ясной, если мы зададимся вопросом о вероятности выпадения шестерки на игральной кости. Мы можем рассуждать следующим образом: существует две возможности: выпадение шестерки и выпадение чего-то другого; одна из возможностей является благоприятной, следовательно, вероятность равна ½. Однако данный ответ может оказаться ложным, если мы не сделаем допущения о том, что данные две альтернативы являются равно возможными. Это материальное допущение, как правило, не делается, поскольку считается, что возможность выпадения чего-то другого, кроме шестерки, состоит из пяти дополнительных альтернатив (выпадение единицы, двойки и т. д.), каждая из которых является равновероятной с выпадением шестерки. Следовательно, если все шесть сторон считаются равновероятными, то вероятность выпадения шестерки равна ⅙.

Основная задача исчисления вероятности заключается в определении вероятности комплексного события на основании знания о вероятности составляющих этот комплекс событий. Два события считаются независимыми, если наличие или отсутствие одного не оказывает никакого влияния на наличие другого. Утверждение о том, что два события на самом деле независимы, является материальным допущением, которое следует формулировать в явной форме. Много серьезных ошибок происходит из применения исчисления вероятности в тех случаях, когда независимость событий предполагается без достаточных на то оснований или когда данное условие вообще игнорируется.

Вероятность совместного появления событий

Какова вероятность того, что орел выпадет два раза, если бросить монету тоже два раза? Это событие является сложным, а его компоненты – это орел при первом броске и орел при втором. Если данные события независимы, и если вероятность выпадения орла в каждом случае равна равна ½ то, согласно исчислению вероятности, вероятность совместного появления событий (выпадения орла при двух бросках) является произведением вероятности выпадения орла при каждом из бросков, т. е. ½× ½ или ¼ Мы сможем увидеть, почему данный результат является необходимым следствием сделанных допущений, если пронумеруем все события, являющиеся возможными при двух бросках монеты. Так, мы получаем: ОО, ОР, РО, РР , где порядок букв в каждой из групп обозначает одну возможную последовательность выпадения орла и решки. Таким образом, получается, что при сделанных допущениях имеется 4 равновероятные возможности и только одна, ОО , является благоприятной. Следовательно, согласно полученному результату, вероятность выпадения двух орлов равна ¼. Вообще, если а и Ь являются двумя независимыми событиями, то Р ( а ) – вероятность первого события, Р ( b ) – вероятность второго, а вероятность их совместного наличия – Р ( ab ) = Р ( а ) × Р ( b ).

При вычислении вероятности сложных событий необходимо проявлять внимание к тому, чтобы перечислить все возможные альтернативы. Если нам нужно установить вероятность выпадения по меньшей мере 1 орла при двух бросках монеты, то перечисление альтернатив дает 3 благоприятных события. Следовательно, вероятность получения по меньшей мере 1 орла равна ¾ Видные ученые допускали ошибки вследствие того, что не учитывали все возможные альтернативы. Например, согласно Д′Аламберу, вероятность выпадения по меньшей мере одного орла равна ⅔ О н перечислил возможные события как О, ОР, РР , утверждая, что если орел выпадет с первого раза, то нет необходимости продолжать броски, с тем чтобы получить, по крайней мере, одного орла. Однако данный анализ ошибочен, поскольку перечисленные им возможные события не являются равновероятными: первая альтернатива заключает в себе возможность двух различных событий, являющихся равновероятными с остальными.

Вероятность совместного появления двух событий иногда может высчитываться, даже если события не являются полностью независимыми. Допустим, в урне находится 3 белых и 2 черных шара, и предположим, что вероятность извлечения каждого из шаров одинакова по сравнению с остальными. Какова вероятность извлечения 2 белых шаров один за другим при первых двух попытках, если шары не заменяются при второй попытке? Изначально вероятность извлечения белого шара равна ⅗ Если извлечен белый шар (и при этом не заменен новым), то в урне остается два белых и два черных шара. Вероятность извлечения второго белого шара, если первый извлеченный шар был белым , равна 2∕4. Из этого следует, что вероятность извлечения двух белых шаров при описанных условиях равна ⅗× ½ или же 3∕10 [48] . Вообще Р ( а ) является вероятностью события а , а Ра(Ь) является вероятностью появления события Ь при появлении события а. Вероятность совместного появления событий: Р(аЬ) = Р(а) х Ра(Ь).

Вероятность одного из взаимоисключающих событий

Иногда нам требуется не вероятность совместного появления событий, а вероятность того, что произойдет одно из событий. Для этих целей мы вводим строго дизъюнктивные, или взаимоисключающие, события. Два события являются взаимоисключающими, если оба не могут произойти одновременно (если происходит одно, то другое отсутствует). При бросании монеты такие события, как выпадение орла или решки, считаются взаимоисключающими. Можно доказать, что вероятность того, что произойдет одно из взаимоисключающих событий, является суммой вероятностей каждого из событий. Какова вероятность получения 2 орлов или 2 решек при двух бросках монеты при допущении того, что вероятность выпадения орла равна ½и что броски осуществляются независимо? Вероятность выпадения двух орлов является произведением вероятностей выпадения орла при первом броске и орла при втором броске, т. е. ¼ Сходным образом вероятность выпадения двух решек равна ¼ Следовательно, вероятность выпадения либо двух орлов, либо двух решек равна ¼+ ¼ т. е. ½ Тот же результат получается при непосредственном применении определения вероятности к четырем возможным событиям: ОО, ОР, РО, РР . Два из перечисленных событий являются благоприятными. Следовательно, искомая вероятность равна 2/4 или ½ Вообще, если Р ( а ) и Р ( b ) являются возможностями двух взаимоисключающих событий соответственно, то вероятность получения одного из двух событий равна Р ( а + b ) = Р ( а ) + Р ( b ).

Две данные теоремы (теорема умножения для независимых событий и теорема сложения для взаимоисключающих событий) являются фундаментальными теоремами исчисления вероятности. С помощью самих этих теорем, а также с помощью их расширений можно с легкостью разрешить и более сложные проблемы. Предположим, что мы по одному разу извлекаем шары из двух урн. При этом в первой содержится 8 белых и 2 черных шара, а во второй —6 белых и 4 черных шара. Извлечение любого из шаров считается равновероятным. Какова вероятность того, что, когда мы извлечем по одному шару из каждой урны, по меньшей мере один из них будет белым? Вероятность извлечения белого шара из первой урны равна 8∕10, а из второй урны —6∕10. Возникает соблазн сложить эти дроби, с тем чтобы получить вероятность извлечения белого шара из любой из двух урн. Однако такой шаг будет ошибочным. О твет будет больше 1, что абсурдно. И действительно, в данном случае мы не можем просто складывать, поскольку данные события не являются взаимоисключающими. Однако мы можем получить нужный результат следующим образом: вероятность неизвлечения белого шара (т. е. извлечения черного шара) из первой урны равна 2∕10; а вероятность неизвлечения белого шара из второй урны равна 4∕10. Следовательно, предполагая, что извлечения осуществляются независимо, вероятность неизвлечения белого шара ни из первой, ни из второй урны равна 2∕10 × 4∕10, т. е. 8∕100. Следовательно, поскольку мы должны либо не извлечь ни одного белого шара из двух урн, либо извлечь хотя бы один, то вероятность извлечения по меньшей мере одного шара равна 1–8∕100, или 92∕100.

Какова вероятность выпадения 3 орлов при 5 бросках монеты при допущении, что орлы и решки равновероятны и что все броски являются независимыми? При решении данной задачи мы познакомимся еще с одной важной формулой исчисления вероятности. Возможно, мы начали бы рассуждать так: поскольку подбрасываются 5 монет, то вероятность выпадения орла на каждой из них равна ½ а искомая вероятность ½× ½× ½ или ⅟₈ Однако нам нужно выпадение трех орлов, и, следовательно, две другие монеты должны выпасть решкой, вероятность чего равна ½× ½ или ¼ из этого мы можем заключить, что вероятность выпадения лишь 3 орлов (т. е. 3 орлов и 2 решек) равна ⅛× ¼ или 1/32 Однако данный ответ будет неверным. В его неправильности можно будет легко убедиться, если выписать все возможные способы, которыми могли бы выпасть 5 монет, а затем непосредственно применить определение вероятности к этим равновероятным альтернативам.

Возможные альтернативы таковы:

Имеется 32 равновероятные возможности, из которых 10 являются благоприятными. Вероятность выпадения 3 орлов и 2 решек равна 10/32, что в десять раз больше, чем результат, полученный неверным методом.

Теперь мы можем понять, почему изначально предложенный метод был неверным. В нем не учитывались различные варианты упорядочивания, по которым могли выпасть 3 орла и 2 решки. Следовательно, нам требуется способ оценки числа различных вариантов упорядочивания, которые можно изобразить с помощью 5 буквенных знаков, 3 из которых будут представлять одну букву, а 2 – другую. Читателям, знакомым с законами комбинаторики, будет несложно осуществить подобную оценку. Тем же, кто не знаком с этой областью арифметики, не следует отчаиваться, поскольку существует очень простая формула, позволяющая легко получать нужный результат. Число возможных событий для каждой категории сложного события (т. е. 1 для 5 орлов и 0 решек, 5 для 4 орлов и 1 решки и т. д.) является ничем иным, как соответствующим коэффициентом в разложении двучлена

(а + Ь)5 = а5 + 5 а4Ь + 10 а3Ь2 + 10 а2Ъ3 + 5 аЬ4 + Ь5.

Таким образом, можно строго доказать, что если р является вероятностью события, a q является вероятностью его единственной взаимоисключающей альтернативы, то вероятность комплексного события, количество компонентов которого равно п, получается посредством выбора соответствующего термина при разложении двучлена (р + q)n . Разложение данного двучлена может быть осуществлено довольно просто:


Рассмотрим еще одну иллюстрацию формулы двучлена. Урна содержит 2 белых шара и 1 красный. Нам нужно 4 раза извлечь шар из урны, при том что мы каждый раз будем заменять извлеченный шар на такой же. Мы можем полагать, что все шары равновероятны относительно возможности быть извлеченными и что содержимое урны тщательно перемешивается после каждого извлечения, так что все извлечения независимы. Какова вероятность извлечения 3 белых шаров и 1 красного? Вероятность извлечения белого шара: р = 2/з, а красного: q = ⅓. Чтобы получить нужный ответ, нам следует лишь разложить двучлен:

(р + q)4 = р4 + 4p3q + 6p2q2 + 4 pq3 + q4,

а затем подставить указанные нумерические значения в термин, который представляет вероятность извлечения 3 белых шаров и 1 красного. Данным термином является 4p3q , а искомая вероятность равна 4 х (⅔)3 х (⅓) или 32/81.

§ 3. Интерпретация вероятности

Проведенное краткое рассмотрение исчисления вероятности не исчерпывает все интересные теоремы, содержащиеся в данной теме. Однако нам следует вернуться к обсуждению логики вероятностного вывода. Повторим еще раз сформулированное нами предупреждение. Математическая теория вероятности исследует необходимые следствия наших предположений о множестве альтернативных возможностей и не может сообщить нам вероятность какого-либо конкретного события. Возникают естественные вопросы: как в таком случае устанавливается вероятность конкретных событий, при каких обстоятельствах используются теоремы исчисления вероятности?

Вероятность как мера верования

Анализ вероятностного вывода, проведенный нами в начале данной главы, не представляет обычной интерпретации этой проблематики. Вероятность того или иного события, как правило, отождествлялась с силой верования в то, что событие произойдет. Согласно де Моргану, вероятность означает «психическое состояние относительно некоторого утверждения, приближающегося события или любого другого обстоятельства, в отношении которого невозможно абсолютное знание». Выражение «это скорее является вероятным, чем невероятным», согласно его позиции, означает «я верю в то, что это случится, больше, чем я верю в то, что этого не случится» [49] . Всезнающее существо никогда не прибегнет к вероятностному выводу, поскольку оно будет достоверно знать истинность или ложность любого суждения. Те же существа, которые не обладают всезнанием, вынуждены опираться на вероятностный вывод, поскольку их знание является неполным и вероятность является мерой их неполного знания. Когда мы в целом уверены, что событие произойдет, то его вероятность равна 1; когда наша вера в его невозможность является подавляющей, то вероятность такого события равна 0; когда же наша вера находится между уверенностью в том, что событие произойдет, и уверенностью в том, что оно не произойдет, то вероятность выражается некоторой дробью, величина которой меньше 1 и больше 0.

При такой интерпретации вероятности исчисление вероятности может использоваться только в случаях, когда наше незнание распределено между несколькими альтернативами. Как мы убедились, математическая теория может ответить на вопрос «какова вероятность того, что при трех бросках монеты орел выпадет 3 раза», только когда имеется информация относительно 1) количества альтернативных способов, которыми может упасть монета, 2) равновероятности всех перечисленных альтернатив и 3) независимости различных бросков. При психологической интерпретации вероятности как меры верования или ожиданий подобную информацию получить вовсе не сложно, поскольку подобная теория опирается на известный критерий, который называется принципом недостаточного основания, или принципом безразличия. Согласно данному принципу, если не существует известных причин для приписывания предмету одной, а не другой из нескольких имеющихся альтернатив, то в отношении подобного знания утверждения о принадлежности этих альтернатив предмету обладают одинаковой вероятностью. А если нет известной причины для того, чтобы верить, что два события являются скорее независимыми, чем зависимыми, то вероятность того, что они независимы, является такой же, как и вероятность того, что они зависимы. Две альтернативы одинаково вероятны, если имеется «одинаковая нерешительность или верование относительно каждой из них». Когда мы вообще не обладаем никаким знанием о двух альтернативах, то вероятность того, что произойдет одно из них, должна согласно данному подходу рассматриваться как равная ½. Если же мы смотрим на незнакомую монету и не имеем никаких причин считать, что одна сторона выпадет скорее, чем другая, то мы должны считать, что вероятность выпадения каждой из сторон одна и та же.

Данная интерпретация не имеет никакого отношения к основаниям теории вероятности. Во-первых, наша способность успешно предсказывать и контролировать поток происходящих изменений посредством вероятностного вывода (например, в области термодинамики и статистической механики) в таком случае становится необъяснимой, если подобные выводы основываются исключительно на нашем незнании или силе нашего верования. Ни одна страховая компания не просуществовала бы долго, если бы в ней решения принимались на основании приблизительной оценки верований и ожиданий ее сотрудников.

Во-вторых, если вероятность является мерой верования, то чье верование мы в таком случае измеряем? Стоит ли говорить о том, что верования относительно одних и тех же событий у разных людей могут быть совершенно разными? Все мы обладаем живым темпераментом, так что наши верования в определенное время и в отношении определенных вещей проходят через всю палитру состояний: от отчаяния до уверенности. Какое же состояние следует выбрать в качестве меры вероятности?

В-третьих, поскольку коэффициенты вероятности можно складывать и умножать, то и верования в таком случае должны были бы стать комбинируемыми соответствующим образом. Но на самом деле нельзя найти такой операции, как сложение верований, верования не могут быть измерены, что станет еще более понятным, когда мы рассмотрим принципы измерения.

Наконец, можно показать, что психологическая теория вероятности приводит к абсурдным результатам, если существенно не ограничить область ее применения. Предположим, что мы знаем, что объем единицы массы некоторого вещества находится между 2 и 4. При такой интерпретации вероятности можно сказать с одинаковой долей вероятности, что удельный объем располагается как между 2 и 3, так и между 3 и 4. Однако удельная плотность обратно пропорциональна удельному объему, так что если объем – это v , то плотность – это 1/ v . Следовательно, плотность данного вещества должна находиться где‑то между ½ и ¼ (т. е. между 4/8 и 2/8, и, следовательно, также вероятно, что она будет находиться где‑то между 3/8 и ¼. Это, однако, равносильно утверждению о том, что удельный объем должен лежать между 2 и 8/3 с той же вероятностью, что и между 8/3 и 4. Это противоречит нашему исходному результату.

Вероятность как относительная частота

Сложности подобного рода привели к интерпретации вероятности как относительной частоты, с которой конкретное событие будет происходить в общем классе событий. Так, когда мы говорим, что вероятность того, что данная монета упадет орлом, равна ½, мы хотим сказать, что, по мере того как количество бросков этой монеты будет увеличиваться, соотношение между количеством выпавших орлов и общим количеством бросков будет около (т. е. не будет материально отличаться от) ½. Подобное утверждение, разумеется, является предположением, или гипотезой, относительно действительного положения дел в природе и поэтому требует подтверждающих его фактических оснований. Подобные основания могут быть рациональными (в смысле дедукции на основе имеющегося ранее знания) или статистическими. Мы можем знать, что одноцентовые монеты симметричны, и, опираясь на наше знание механики, мы можем заключить, что силы, заставляющие монету падать орлом вверх, уравновешиваются силами, заставляющими монету падать решкой. Или же мы можем опираться на чисто эмпирическое наблюдение как на основание для заключения о том, что в конечном счете количество падений монеты орлом вверх не превысит количество ее падений вверх решкой. В физических науках, таких как метеорология или генетика, а также и в практических делах, таких как страхование, мы полагаемся на оба вида фактических оснований. Однако статистические основания не только нельзя отбросить, но они к тому же и больше на виду. При этом нам не следует полностью отождествлять значение гипотезы и имеющийся объем статистических данных, подтверждающих ее в определенный момент времени. В гипотезе, объясняющей природу определенных вещей, утверждается нечто относительно всех возможных феноменов или членов данного класса. Поэтому она никогда не может быть доказана никаким количеством конечных наблюдений. Однако если у нас будет несколько гипотез, предпочтительна та, которая лучше других согласуется с наблюдаемыми и статистически сформулированными истинами.

При таком подходе мы можем лучше уяснить функцию математической теории вероятности. Предположим, мы начинаем с гипотезы, согласно которой вероятность рождения мальчика равна ½. Исчисление вероятности можно в таком случае использовать, с тем чтобы выводить и предсказывать частоту, с которой будут появляться семьи с двумя детьми мужского пола или семьи с двумя детьми противоположных полов. Может случиться так, что в какой-нибудь отдельно взятой общине все дети, рожденные в течение года, оказались девочками. Будет этот факт опровержением того, что вероятность рождения мальчиков равна ½? Совсем нет! Наше исчисление показывает, что при наших допущениях подобное событие крайне маловероятно, но при этом не невозможно. При этом исчисление может также показать, что такое «исключительное» событие находится в еще большем согласии с каким-то еще допущением (или является менее маловероятным, чем такое допущение). Большое количество повторений исключительных событий может, таким образом, увеличить вероятность истинности какой-нибудь иной гипотезы и уменьшить вероятность истинности той, что принята на текущий момент. Так, гипотеза о том, что вероятность рождения ребенка мужского пола равна 105/205, лучше согласуется с реальными статистическими наблюдениями.

Исчисление вероятности, таким образом, систематизирует наш опыт относительно наипростейших допущений, которые также объясняют и появляющиеся исключения. Разумеется, ни одна гипотеза относительно вероятности какого-нибудь события не может быть полностью опровергнута конечным числом наблюдений, поскольку даже очень значительные расхождения от наиболее вероятных в теоретическом смысле результатов не являются невозможными. Однако статистические результаты могут показать, что одни гипотезы менее вероятны, чем другие.

Согласно такой точке зрения вероятность не имеет дела с силой субъективных чувств. Она фундирована в природе классов событий. А для определения вероятности классов событий требуются объективные данные. При этом следует отметить, что при таком подходе вероятность уникального случая бессмысленна. Когда мы говорим о вероятности единичных случаев, то получается, что мы говорим эллиптически, т. е. ведем речь о некоторой фазе события, которая является общей и для других событий подобного вида. Поэтому, когда мы говорим, что вероятность выпадения орла для данной монеты при определенном броске равна ½, то мы на самом деле имеем в виду то, что при большом количестве подобных бросков примерно в половине из них выпадет орел. Когда мы говорим, что при двух бросках монеты вероятность выпадения двух орлов равна ¼, мы имеем в виду то, что при достаточно большом количестве серий из двух бросков количество серий, содержащих двух орлов, будет примерно равняться ¼ от общего количества серий.

Неотложным следствием из вышесказанного является предостережение от того, что называется «ошибкой игрока». Допустим, мы вступаем в игру с монетой. Предполагается, что игра «честная», т. е. в ней вероятность выпадения орла равна ½, а броски являются независимыми. Предположим, имеется серия из 20 выпавших подряд орлов, и мы хотим сделать ставку на результат следующего броска. Какова вероятность того, что при следующем броске выпадет орел? Многие игроки заключают, что вероятность выпадения орла меньше, чем ½, на том основании, что, предположительно, количество орлов и решек должно «сравняться», если монетка не является поддельной. Однако подобное заключение является неверным, а все так называемые системы, разрабатываемые игроками для обеспечения выигрыша, неизбежно пагубны для тех, кто ими пользуется. Если монета, действительно, не поддельная, то 20 выпавших подряд орлов никак не влияют на результат 21 броска. Когда мы говорим, что вероятность выпадения орла на 21-м броске равна ½, то мы подразумеваем длинную серию бросков. С другой стороны, если монета подделана, с тем чтобы выпадали орлы, то, разумеется, вероятность того, что на 21-м броске выпадет орел, больше, а не меньше, чем ½. Из работ Лапласа известна история о мужчине, который должен был в скором времени стать отцом. По мере приближения дня родов он заметил, что за предыдущий месяц в общине родилось больше девочек, чем мальчиков.

Вследствие этого он сделал большую ставку на то, что у него родится мальчик.

Наконец, нам следует отметить, что вероятность не является внутренне присущей никакому событию. Она может быть свойственна событию только в терминах принадлежности к классу событий. Вероятность выпадения орла при броске монеты рукой может быть ½, вероятность выпадения орла, если ту же монету потрясти внутри чашки, может быть иной. Здесь событие, именуемое «выпадением орла», обозначает два различных класса. А вообще класс событий, к которому принадлежит конкретное событие, всегда следует учитывать при оценке вероятности данного события.

Сформулированная теория вероятности сталкивалась с рядом возражений. Похоже, данная теория не способствует интерпретации того, что мы имеем в виду, когда говорим о вероятности истинности теории или вероятности истинности суждений, описывающих определенные события. Мы зачастую заявляем, что гелиоцентрическая система более вероятна, чем геоцентрическая. Что все это означает с позиции теории вероятности как относительной частоты? При этом мы неоднократно повторяем суждения, подобные следующим: «Вероятно, сегодня пойдет дождь», «невероятно то, что Геркулес был исторической фигурой», «вероятно, что даже если бы Наполеон одержал победу при Ватерлоо, он не смог бы долго оставаться императором Франции». Подобные утверждения нелегко интерпретировать, используя обычную теорию вероятности по частоте. Однако подобные возражения не являются фатальными, и на них можно дать ответ, несколько видоизменив техническое выражение частотной теории.

Вероятность как частота истинности типов аргументов

Мы возвращаемся к анализу вероятностного вывода, который мы описали в начале данной главы. Третья интерпретация вероятности восходит к работам Чарльза Пирса. Мы уже говорили об объективных основаниях вероятности, свойственных излагаемому подходу. Теперь же мы намерены обозначить масштаб данной интерпретации.

Предположим, некая трамвайная компания стремится получить привилегии на территории города и решает, что наиболее эффективный способ достигнуть цели – это дать взятку представителям городской администрации. Для этого требуется немало осторожности, поскольку если с подобным предложением подойти к члену городского совета, преисполненному чувством гражданского долга, то все дело может быть провалено. Следует ли представителям компании подойти к члену совета А? О нем известны следующие факты, которые считаются существенными:


1. Он является членом совета, а это значит, что он – профессиональный политик.

2. Он – веселый ирландец, способный видеть в шутке ее суть.

3. Он – правоверный католик и проповедует высокие моральные принципы.

4. Он владеет недвижимостью и подозревается в мошеннических сделках, также связанных с недвижимостью.


5. Он – член местного школьного совета и вручает призы школьникам, продемонстрировавшим успехи в учебе.

6. Он никогда официально не протестовал против коррупции в государственных учреждениях.

Насколько вероятно то, что он примет плату в обмен на свой голос, если взятка будет ему предложена должным образом? Рассмотрим первый пункт. Если бы это было единственное обстоятельство, известное о мистере А, то теория вероятности по частоте истинности интерпретировала бы вероятность того, что мистер А примет взятку следующим образом. Рассмотрим класс истинных суждений n, полученных из выражения «X является политиком» путем придания переменной X конкретных значений. Рассмотрим также класс суждений nt, полученный путем придания тех же значений переменной X, стоящей в суждении «X является политиком, и X является мздоимцем». Некоторые из суждений, полученных во втором наборе, являются истинными, другие – ложными. Тогда предельная величина отношения nt/n определяется как вероятность того, что каждый отдельный индивид, например мистер А, будет брать взятки на том основании, что он является политиком. Иными словами, вероятность истинности суждения относительна частоте, с которой из класса умозаключений могут быть получены истинные заключения при истинных посылках. Вообще говоря, мы не знаем точного нумерического значения этого отношения. В таком случае мы говорим, что заключение является вероятностным при данных основаниях, если из класса таких умозаключений чаще следуют истинные заключения, чем ложные.

Однако что если основания для истинности суждения являются более сложными, чем только что рассмотренные? В таком случае анализ аргумента также становится более сложным: однако интерпретация вероятностного вывода остается той же. Если бы нам нужно было рассмотреть первые два пункта, относящиеся к мистеру А, то класс суждений n был бы получен из суждения «X является политиком и X является веселым ирландцем», тогда как класс nt был бы получен из суждения «X является политиком, и X является веселым ирландцем, и Х является мздоимцем». Предельная величина отношения nt/n будет вновь определять вероятность того, что мистер А является мздоимцем на том основании, что он – веселый ирландский политик. Сходные соображения применялись бы и в том случае, если бы мы рассматривали в качестве оснований все шесть истинных суждений о мистере А.

В большинстве случаев, как мы уже замечали, нумерическое значение коэффициента вероятности неизвестно. В таких случаях нам приходится довольствоваться более или менее смутными представлениями, а иногда и сущими догадками относительно его величины. Зачастую основания могут быть столь сложны, что нумерическая оценка частоты истинности становится невозможной по практическим причинам. Это, однако, не губительно для такой интерпретации, поскольку мы способны рассуждать при неопределенных коэффициентах так же, как и при определенных. Великое достоинство теории вероятности как частоты истинности заключается 1) в успешности, с которой она интерпретирует как определенные нумерические вероятности, так и неопределенные, и 2) в ее способности предоставлять объективное прочтение вероятности истинности суждений, описывающих единичные события.

1. Теория частоты истинности может вместить в себя все теоремы исчисления вероятности, а также принять статистическое обоснование вероятности посредством простого изменения некоторых аспектов терминологии. Вместо обсуждения событий, таких как выпадение орла, теория частоты истинности будет рассматривать суждение «эта монета упадет орлом вверх при следующем броске». Вместо того чтобы говорить о классе событий, эта теория будет обсуждать класс умозаключений. Не вызывает сомнения то, что относительная частота, с которой суждение «эта монета упадет орлом вверх при броске X» является истинным или когда истинным является суждение «эта монета брошена при специфических условиях при броске X», должна быть такой же, как и относительная частота появления события выпадения орла в серии бросков монеты. Сходным образом независимые, взаимоисключающие и сложные события рассматриваются в терминах независимых, взаимоисключающих и сложных суждений.

2. Вероятность реальных единичных событий оценивается с помощью теории частоты истинности в терминах вида оснований, предлагаемых для каждого события. Что касается доказательной силы оснований, то она зависит уже от фактического положения дел. Сказать «вероятно, что сегодня пойдет дождь» означает, что истинность суждений, сообщающих о текущем поведении барометра, изменениях температуры, облачности неба и т. д. по факту сопровождается с определенной относительной частотой истинностью суждений, в которых утверждается выпадение осадков в течение определенного количества часов [50] .

Последнее предостережение поможет нам избежать часто встречающихся спутываний. Если бессмысленно говорить о покоящемся или движущемся теле безотносительно какого-либо другого тела, то также бессмысленно говорить и о вероятности события или истинности набора суждений безотносительно определенных оснований или материальных допущений. Если же, несмотря на это, мы все равно время от времени говорим о покоящихся телах, то это только потому, что мы столь часто подразумеваем Землю как референтное тело, что зачастую не считаем нужным его упоминать. Так же происходит и в философии: когда мы говорим обо всех материальных суждениях или теориях как о всего лишь вероятных, мы подразумеваем отсылку к целому набору доступного знания, способного служить в качестве существенного основания.

Данное обстоятельство снимает затруднение, которое порой ощущается в том, что касается вероятности философских теорий и их отношения к миру в его целостности. «Универсумы, – как пишет Пирс, – не столь многочисленны, как ягоды ежевики». Однако с логической точки зрения действительный мир – это всего лишь один из класса возможных миров, и вероятность любой теории в отношении действительного мира является относительной частотой, с которой, согласно нашим приблизительным оценкам, теории данного типа являются истинными с опорой на реально доступные основания.

Специфические сложности, встречающиеся при изучении вероятностного вывода, заключаются в разложении большого многообразия подобных умозаключений на их составляющие элементы, в оценке доказательной силы каждого из этих элементов и в определении того, являются ли эти элементы независимыми друг от друга. Такая задача не для вводной и ознакомительной книги. Тем не менее, в более поздних главах у нас еще будет возможность исследовать более сложные формы вероятностного вывода.

Глава IX. Некоторые проблемы логики