Впрочем, не так уж важно даже, какие давние или недавние гипотезы подтверждает представление о нейронных ансамблях. Важнее то, что оно выглядит применимым не только к врожденным, но и вообще к любым поведенческим актам. Достаточно просто допустить, что если ЦГП для врожденных действий формируются в онтогенезе задолго до того, как животное впервые попадет в соответствующую ситуацию, то ЦГП для индивидуальных форм поведения складываются и перестраиваются по мере выработки навыка. Если это так, то концепция нейронных ансамблей может оказаться зародышем единого подхода ко всем формам поведения.
Уже сейчас нейроэтологи на своих семинарах обсуждают, применимо ли такое понимание к тем нервным процессам, которые не имеют моторного выхода, – например, к восприятию. На первый взгляд этого никак не может быть: результатом работы известных на сегодня генераторов является целостная последовательность команд, адресованных мышцам и другим исполнительным механизмам. А что может быть результатом работы аналогичного ансамбля в структурах, занятых восприятием? Но есть предположение, что этим результатом становится некий внутренний образ важного сигнала, позволяющий затем узнавать и выделять его в потоке информации, поступающей от органов чувств. Те, кому приходилось заниматься сканированием текстов, знают: отсканированный текст сохраняется в памяти компьютера в виде картинки. Чтобы он стал текстом, нужна специальная распознающая программа. Вот такие «распознающие программы»[131] и могли бы быть результатом работы ЦГП в воспринимающих структурах мозга.
Как и положено в науке, концепция нейронных ансамблей, отвечая на одни вопросы, ставит другие. Как формируются ЦГП? Могут ли они перестраиваться или для каждого нового навыка требуется создать новый ЦГП? Как они взаимодействуют между собой – в частности, может ли один и тот же нейрон входить в разные ЦГП, активируемые разными химическими сигналами? И если да, то что происходит в случае «конфликта интересов» – одновременного поступления обоих сигналов, оказывающих противоположное действие на данный нейрон? Вопросов такого рода возникает много – но это и есть та самая программа будущих исследований, которая делает научную концепцию плодотворной. Окажется ли она достаточно глубокой, чтобы стать основой для нового понимания поведения в целом, или же обернется еще одним соблазном – покажет будущее. Мы же, оставаясь в сегодняшнем дне, вынуждены на этом поставить точку.
ПослесловиеО забывчивых мышках и беспамятной науке
Читатель вправе спросить: ну хорошо, все это, может быть, и интересно, но зачем нам сегодня вникать в давние гипотезы и дискуссии? История все расставила по своим местам, прозрения ученых прошлого стали сегодня прописными истинами, а их заблуждения покоятся вместе с ними. Зачем сегодня ворошить прошлое? Не лучше ли было рассказать побольше о сегодняшнем дне науки? О том, как ученые, вооруженные самыми изощренными методами и самыми современными представлениями, раскрывают глубочайшие тайны поведения, к которым величайшие умы прошлого не знали даже, как подступиться?
Ну что ж, давайте расскажем хотя бы об одном таком исследовании. Вот, например…
В 2014 году в одном из самых престижных научных журналов мира – Science – была опубликована статья большой японо-канадской группы исследователей, занимавшихся изучением нейронных механизмов памяти – точнее, забывания – у мышей. Грызунов сажали в специальную клетку с решетчатым полом, на который время от времени подавался чувствительный электрический разряд. Через некоторое время у мышей, естественно, выработался условный рефлекс: они замирали (это обычное для мышей поведение при испуге) уже при одном попадании в «электрическую» клетку, не дожидаясь тока. Дальше экспериментаторы следили за динамикой угасания этого навыка, день за днем помещая «обученных» зверьков в страшную клетку, но не включая ток.
Оказалось, что у 17-дневных мышей-подростков реакция испуга при отмене подкрепления быстро начинала слабеть и к концу второй недели практически исчезала, в то время как взрослые мыши исправно замирали в экспериментальной клетке и через месяц после того, как их там последний раз били током. Далее исследователи при помощи ряда дополнительных экспериментов убедительно показали, что это различие связано с разной интенсивностью образования в мозгу новых нейронов (неонейрогенеза) у юных и взрослых мышей (понятно, что у первых новые нейроны возникают в гораздо большем числе). Фармакологическое подавление созревания нейронов заставляло молодых зверьков помнить неприятный опыт гораздо дольше. Зато у взрослых искусственная стимуляция нейрогенеза (как специальным препаратом, так и посредством регулярного бега в колесе) вела к более быстрому угасанию реакции замирания. Это и позволило авторам сделать вывод, что неонейрогенез стимулирует стирание из памяти ранее зафиксированной информации. А поскольку неонейрогенез уже сравнительно давно рассматривается в нейрофизиологии как один из ключевых процессов в механизме запоминания, то получается, что запоминание и забывание – две стороны одного и того же явления. Ну и так далее.
Честно говоря, читая эту работу, не знаешь, смеяться или плакать. В главе 5 мы говорили о том, что в 1903–1906 годах Иван Павлов и его сотрудники установили основные закономерности условно-рефлекторной деятельности. В частности, они показали, что выработанный условный рефлекс сам по себе не исчезает, но может быть угашен многократным предъявлением условного раздражителя без подкрепления. В то время, как мы помним, Павлов работал только на «слюноотделительной» модели, но позже эффект угасания был подтвержден и для моторных навыков, и объяснить, о чем идет речь, легче на них. Допустим, мы выучили собаку поднимать лапу, скажем, на звук метронома. Потом мы много раз включали метроном, а еды не давали, и после ряда таких «обманов» собака перестала реагировать на характерный звук. Но если ее несколько дней не трогать, а потом снова привести в экспериментальную комнату и включить метроном, скорее всего, она снова поднимет лапу. Это ясно показывает (и Павлов прямо об этом пишет), что в ходе угашения рефлекса собака не «забыла» сигнальное значение звука метронома, а научилась на него не реагировать. Произошло не «стирание» старого навыка, а формирование нового, состоящего в активном блокировании («торможении» в павловской терминологии) старого. Сама же однажды созданная связь между условным и безусловным стимулами остается вполне сохранной – и, вероятно, сохранится до конца дней животного.
Но ведь процедура современного эксперимента с мышами точно соответствует павловскому описанию ситуации угашения условного рефлекса: многократное предъявление условного стимула («электрической» клетки) без подкрепления (тока)! Так что угасание реакции испуга у подопытных мышей – никакое не «забывание прежнего опыта», а активное запоминание нового. И то, что в этом обучении какую-то важную роль играет неонейрогенез, – факт вполне естественный, но, увы, для 2014 года довольно тривиальный. Ради очередного его подтверждения вряд ли стоило городить огород.
Конечно, за прошедший со времен работ Павлова век с лишним наши представления о поведении животных сильно изменились (см. главу 5 – да и все последующие главы), сегодня не принято описывать поведение – даже такое простое, как замирание при испуге – в категориях «рефлексов». Но факты и эмпирические закономерности, открытые Павловым и его школой, никуда не делись – как бы мы их ни трактовали и в каких бы терминах и понятиях ни описывали.
К тому же представление о том, что исчезновение поведенческой реакции на тот или иной стимул совершенно не означает исчезновения памяти о нем в мозгу животного, получило позже красивое подтверждение на совсем другой форме поведения. Спустя полвека после вышеупомянутых работ Павлова, во второй половине 1950-х, другой советский ученый, психофизиолог Евгений Соколов исследовал механизм привыкания – явления давно известного, но довольно загадочного с точки зрения тогдашних представлений о работе мозга. Речь идет вот о чем. Если предъявить животному или человеку внезапный и достаточно сильный нейтральный стимул (вспыхнувшую лампочку, звонок, гудок и т. д.), это вызовет характерную и довольно универсальную поведенческую реакцию: животное прерывает свое текущее поведение (еду, чистку, игру и т. д.), поднимает голову и поворачивает ее в сторону сигнала, настораживает уши. Еще характернее изменения, которые можно наблюдать в этот момент на электроэнцефалограмме: все «правильные», ритмические колебания мгновенно пропадают, уступая место низкоамплитудной активности неправильной формы. (Павлов называл эту реакцию «рефлексом „что такое?“, позднее в русской научной литературе за ней закрепилось название „ориентировочная реакция“, а в англоязычной – arousal reaction».) Если такой сигнал повторяется много раз и за ним не следует ничего значимого, животное перестает обращать на него какое-либо внимание – очередные предъявления стимула никак не отражаются ни в поведении, ни в ЭЭГ[132].
В классической физиологии эта реакция предположительно объяснялась «утомлением рецепторов» (впрочем, сию сомнительную гипотезу никто толком не проверял). Однако Соколов показал, что стоит немного изменить параметры сигнала (дать звук несколько другого тона или длительности) – и мы вновь получим ориентировочную реакцию во всей красе. Мало того: если, скажем, давать такие сигналы через правильные промежутки времени, дождаться угасания реакции, а потом очередной сигнал пропустить – мы получим великолепную ориентировочную реакцию вообще ни на что, на отсутствие стимула! Это доказывает, что в основе привыкания лежит опять-таки активное обучение: мозг создает довольно подробный образ «того-на-что-не-надо-реагировать», сравнивает с ним вновь поступающие сигналы и в зависимости от результатов сравнения либо запускает ориентировочную реакцию, либо блокирует ее. То есть отсутствие поведенческой реакции и в данном случае означает не отсутствие соответствующих следов памяти, а как раз их наличие.