Выносливость. Разум, тело и удивительно гибкие пределы человеческих возможностей — страница 12 из 59

впечатление, сбавляя скорость к концу забега, чтобы красиво финишировать? «Нет, — ответил я, — просто…» Но у меня не было объяснения. Я и сам этого не понимал.

Как оказалось, такое случалось не только со мной. Ноукс показал мне исследование, которое он, Такер и Майкл Ламберт опубликовали в 2006 году, анализируя график изменения темпа почти во всех забегах при установлении мировых рекордов[100] мужчинами в современную эпоху на дистанциях 800 м, 1 миля, 5 км и 10 км. Для трех длинных дистанций картина была удивительно последовательной: после быстрого старта рекордсмены переходили на устойчивый темп вплоть до заключительного этапа бега. Затем они ускорялись, хотя всю дистанцию бежали быстрее, чем обычно, и их изголодавшиеся по кислороду мышцы погружались в море вызывающих усталость метаболитов. Во всех 66 рекордных забегах на 5 и 10 км, начиная с 1920-х, кроме одного, последний километр был либо самым быстрым, либо вторым по скорости (после первого километра). Я был готов списать свой неровный темп на некомпетентность, но это были лучшие бегуны в истории в лучшие дни своей беговой карьеры. Получается, это что-то глубже, чем просто неумение поддерживать темп.


Согласно анализу 2006 года в International Journal of Sports Physiology and Performance, графики мировых рекордов в беге на длинные дистанции составляют удивительно стройную схему, которая включает быстрое пробегание финальной стадии. Ускорение на финише отсутствует в более коротком беге на 800 м по причинам, которые мы обсудим в главе 6. Промежуточные отрезки на схеме показаны каждые 400 м для двух более коротких дистанций и каждые 1000 м для двух более длинных


По мнению Доминика Миклрайта, исследователя из Эссекского университета, есть все основания полагать, что поддержание необходимого темпа — это не только вопрос выбора, но и инстинкт. Миклрайт пришел в науку необычным путем, сразу после окончания средней школы поступив в Королевский военно-морской флот, где семь лет служил водолазом на атомных подводных лодках, а затем девять лет работал полицейским в Лондоне и уже потом стал изучать психологию спорта и физических упражнений. Интерес к проблеме распределения сил по дистанции у него появился еще во время обучения погружениям на флотской службе на острове Хорси, на южном побережье Великобритании. Стажерам ставилась задача проплыть под водой на другой конец тысячедвухсотметрового соленого озера, не истратив весь запас воздуха. «Если бы вас поймали в момент, когда вы выныривали из воды[101], вас бы ударили веслом по затылку или бросили в воду подводную хлопушку, чтобы напугать вас, — вспоминает он. — Имея такой стимул, вы бы неизбежно очень тщательно обдумывали задачу расхода и сил, и кислорода — как можно более экономно».

В 2012 году Миклрайт собрал более сотни детей и подростков[102] в возрасте 5–14 лет и провел серию тестов для оценки их когнитивного развития, чтобы распределить их по четырем стадиям развития интеллекта, предложенным швейцарским психологом Жаном Пиаже. Затем дети пробежали дистанцию продолжительностью около четырех минут. Младшие на двух нижних стадиях, обозначенных Пиаже, мчались со всех ног в начале дистанции, а затем бежали «на выживание», постепенно замедляясь. Но более старшие дети, на двух более высоких ступенях по классификации Пиаже, уже использовали знакомую нам U-образную схему темпа, характерную для рекордсменов: быстрый старт, постепенное замедление, затем быстрый финиш. Иными словами, примерно в возрасте 11–12 лет наш мозг уже умеет предвидеть будущие энергетические потребности и держать что-то в резерве. По мнению Миклрайта, это пережиток далекого прошлого, когда в поисках пищи нужно было расходовать энергию, сохраняя при этом ее «неприкосновенный запас».

Не все верят аргументу Ноукса о том, что схема изменения темпа — например, рывок на финише — свидетельствует о работе центрального регулятора. Скажем, вы можете ускориться в конце, потому что наконец-то используете свои драгоценные, но ограниченные запасы анаэробной энергии — высокооктанового источника топлива, питающего организм во время коротких гонок, длящихся менее минуты. Но есть и другие намеки на то, что последний рывок не просто физиологичен.

В 2014 году группа экономистов из Университета Южной Калифорнии, Калифорнийского университета в Беркли и Чикагского университета собрала данные о времени финиша более девяти миллионов марафонцев[103] по всему миру за четыре десятилетия. Распределение времени немного напоминает классическую колоколообразную кривую, но с резкими пиками. Вокруг каждого значимого результата — три, четыре часа, пять часов — число пробежавших марафон чуть быстрее «круглого» результата больше, чем предполагает нормальное распределение, а число пробежавших чуть медленнее — меньше. Схожие, но менее выраженные всплески появляются на получасовых отметках, и даже в случае с десятиминутным шагом есть едва заметная «рябь». Жестокие метаболические потребности организма во время марафона, который неизбежно истощает запасы легкодоступного топлива, приводят к тому, что большинство людей замедляются на последних километрах. Но при правильной мотивации некоторые способны ускоряться. И только мозг может реагировать на абстрактные стимулы, такие как результат быстрее четырех часов на произвольной дистанции, например 42,2 км.

Еще одна любопытная деталь: чем быстрее двигались бегуны, тем меньше была вероятность, что они «взорвутся» на финише. Из тех, кто «выбегал» из трех часов, около 30% разгонялись на последних 2,2 км гонки; из тех, кто пытался разменять четыре часа, ускорялись 35%; более 40% тех, кто пытался преодолеть пятичасовой барьер, тоже бурно финишировали. Одно из возможных объяснений таково: во время долгих часов тренировок преданные своему делу бегуны постепенно корректировали настройки центрального регулятора, учась оставлять как можно меньше сил в резерве. Возможно, это еще один, более медленный способ достижения состояния «настоящего момента», который позволяет Диане Ван Дерен бежать на пределе. Я пытался обмануть себя и якобы забыть последний километр в гонке на дистанции 5 км. Ван Дерен, увы, о нем забывает, даже если не хочет.


С самого начала теория центрального регулятора была весьма спорной. После своей речи в 1996 году Ноукс вспоминал: «Люди очень, очень рассердились». Последовали возражения, затем возражения на возражения, и цикл продолжается уже более двух десятилетий. В статье 2008 года в журнале British Journal of Sports Medicine Ноукс утверждал, что внимание физиологов к VO2max «породило безмозглую модель выполнения физических упражнений человеком»[104]. Рой Шепард, влиятельный почетный профессор Университета Торонто, в ответ опубликовал в 2009 году статью в журнале Sports Medicine под названием «Не пора ли отключить центральный регулятор?». После дальнейшего обмена мнениями Шепард сделал вывод: «На языке моих североамериканских коллег[105], возможно, настало время для сторонников позиции “Займись делом или заткнись”».

Споры вокруг теории Ноукса усилились с тех пор, как он вышел на пенсию, уйдя из Университета Кейптауна в 2014 году. В книге о гидратации «Перенасыщенный водой» (Waterlogged) он обвинял большинство ведущих мировых исследователей процесса гидратации (включая бывших коллег и сотрудников) в поддержке производителей спортивных напитков из коммерческих интересов. Теперь он ярый сторонник низкоуглеводного высокожирового рациона для здоровья и достижения спортивных результатов. Это заставило его отказаться от глав о питании и углеводной нагрузке в книге «Библия бега», и он заслужил дисциплинарное слушание[106], где угрожали отозвать его медицинскую лицензию после того, как он написал в Twitter совет кормящей матери: отлучить детей от груди и перевести на низкоуглеводную высокожировую диету.

Потом начались другие споры, и полемика по поводу центрального регулятора отчасти отошла на задний план. Старшее поколение физиологов, ровесников Ноукса, постепенно «отходит от дел», и их не переубедить. С другой стороны, соучредитель Американского общества физиологов физической активности Роберт Робергс говорит о влиянии Ноукса: «Большинство молодых физиологов, изучающих физнагрузку, к которым я бы причислил и себя, признают, что некоторые его выводы верны». То, что мозг играет свою роль в определении пределов выносливости, больше не вызывает сомнений; сейчас идет спор о том, как он это делает.

Чтобы ответить на этот вопрос, наверное, стоило бы заглянуть внутрь мозга во время напряженных упражнений. Благодаря достижениям в области визуализации эта задача, которая до недавнего времени была невыполнимой, сейчас перешла в разряд трудновыполнимых. Функциональная магнитно-резонансная томография, фМРТ, позволяет исследователям наблюдать изменения кровотока в разных областях мозга с большой пространственной точностью, но не способна уловить изменения, которые происходят меньше чем за секунду или две. Также исследуемый должен оставаться неподвижным внутри мощного магнита — это ограничение, которое представляет серьезные проблемы при занятиях физическими упражнениями. Во время моего визита в Кейптаун Ноукс показал мне видео разработанного в Бразилии изобретения в стиле Руба Голдберга[107][108], которое позволяет участникам исследования крутить педали велосипеда, находящегося в соседнем помещении (нельзя помещать металлические предметы в той же комнате, что и магнит МРТ), с помощью трехметрового приводного вала, лежа на спине, в то время как их голова находится внутри цилиндрического отверстия магнита (для сохранения неподвижности она со всех сторон зажата подушками). Но во время первых экспериментов — их результаты опубликованы в 2015 году — не удалось довести испытуемых до изнеможения, и схемы мозговой активности остались невыясненными.