Месяц спустя, окрепший и подтянутый, я снова попробовал силы в полумарафоне, чтобы окончательно настроиться. На этот раз все прошло гладко: я чувствовал себя хорошо, держал темп и закончил гонку, зная, что бежал в полную силу. Я показал результат лучше — 1:12:55, — но ненамного. На этот раз мне было труднее найти оправдание. Я три месяца набирал километраж и упорно тренировался, хоть и не лез из кожи вон, у меня не было ни серьезных травм, ни сбоев в тренировках. Если бы вы попросили меня примерно оценить время перед стартом, я бы сказал: 1:10:00. Я был подавлен, но в конце концов (и это преимущество помешанного на научном подходе к бегу) я придумал себе оправдание: высота.
В то время я жил в Канберре, расположенной в глубине материка на очень скромной высоте около 580 м. Обычно люди не думают о воздействии разреженного воздуха, если речь идет о высотах менее 1000 м. Однако в некоторых исследованиях тренировок на высоте контрольная группа низких высот[222] живет выше 1000 м. Вскоре после неутешительного результата на полумарафоне я брал интервью у ученых из базирующегося в Канберре Австралийского института спорта (AIS). Физиолог Лаура Гарвикан рассказала мне историю о временах, когда сразу после возведения института они настраивали в лабораториях сложное исследовательское оборудование. Несмотря на все усилия, измеренные учеными у спортсменов значения VO2max оставались немного ниже, чем у них же, но в других лабораториях. В конце концов исследователи начали задаваться вопросом: может ли высота иметь эффект? А потом решили проверить это с помощью барокамеры, которая позволяла моделировать условия различных высот.
Исследование, опубликованное в 1996 году, показало любопытную закономерность. У неподготовленных испытуемых не было никакой разницы показателей VO2max на уровне моря и в Канберре[223]. Но у тренированных велогонщиков VO2max снижался в среднем на 6,8% на высоте 580 м, и этот эффект, видимо, был вызван снижением количества кислорода, поступающего с кровью к работающим мышцам. У выносливых спортсменов сердце бьется так мощно, что кровь едва успевает наполниться кислородом, когда течет через легкие. Даже на уровне моря примерно у 70% спортсменов, которым требуется особая выносливость[224], наблюдается заметное падение артериального уровня кислорода во время выполнения упражнений в полную силу, когда сердце работает наиболее активно (эта закономерность еще сильнее выражена у женщин и пожилых). Добавьте чуть более низкий уровень кислорода в окружающей среде на умеренной высоте, такой как Канберра, — и уровень кислорода в крови снизится достаточно, чтобы повлиять на поступление кислорода к вашим мышцам.
Эта же закономерность обнаруживается и у лучших бегунов мира, и даже у тех, кто вырос на гораздо больших высотах. Когда исследователи из Университета Британской Колумбии (UBC) отправились в высокогорный район Кении, чтобы оценить эффективность работы дыхательной системы и доставки кислорода к мышцам у первоклассных бегунов на длинные дистанции, они обнаружили аналогичное распространение «вызванной физическими упражнениями артериальной гипоксемии», или снижение уровня кислорода в крови во время тяжелых физических нагрузок, как и в других группах. «Это самые здоровые люди в мире, — сказал мне исследователь из UBC Билл Шил, — но их кровь по показателям насыщенности кислородом выглядит так, будто они в отделении интенсивной терапии».
Тогда я мог спокойно предположить, что мой VO2max, вероятно, чуть ниже из-за высоты, но мне не было сразу очевидно, почему при этом я бегу медленнее на такой дистанции, как полумарафон. В конце концов, хороший бегун на длинные дистанции может поддерживать в среднем 85% своего VO2max[225] на протяжении 21 км, а на марафоне — в среднем 80%. За пределами лаборатории мы редко работаем на таких предельных режимах насыщения VO2max, потому что усилия, необходимые для этого, слишком велики, чтобы продержаться дольше десяти минут. Ни на одном этапе полумарафона я не сталкивался вплотную с ограничением, связанным с тем количеством кислорода, которое кровь может донести до мышц. То же верно и для бега на длинные дистанции. Исследования спортсменов показали, что увеличение VO2max не обязательно пропорционально улучшению результатов в соревнованиях[226]. Почему же VO2max имеет значение — и имеет ли?
А. В. Хилл и его преемники не ошиблись. VO2max действительно оказывается хорошим показателем производительности. С его помощью нельзя определить победителя в группе близких по силам спортсменов (или лежебок как на подбор, если уж на то пошло). Но если собрать в группе разных людей[227], можно с уверенностью предположить, что те, у кого выше VO2max, будут превосходить тех, у кого ниже значения в тестах на выносливость, даже на больших дистанциях, таких как полумарафон, где никто не достигает своего VO2max. Поэтому не случайно, что норвежский лыжник Бьёрн Дели, который много лет носил неофициальное звание человека с самым высоким показателем VO2max в мире, также был в какой-то момент самым титулованным спортсменом в истории зимних Олимпийских игр, заработав двенадцать медалей, из них восемь золотых. Говорят, он мог получать и использовать 96 мл кислорода на килограмм веса тела каждую минуту — типичный здоровый взрослый человек потребляет 40 мл.
Стоит критически отнестись к цифрам теста. Когда я спросил о знаменитом результате Бьёрна Дели известного американского спортивного ученого Стивена Сейлера, работающего в Норвегии с 1997 года, тот был настроен скептически, заподозрив проблему с достоверностью показателей. В 1990-е, на пике достижений Дели, Норвегия оказалась втянута в жестокую конкурентную лыжную «холодную войну» со Швецией, Россией, Италией и другими странами. «Думаю, они тогда знали, что результаты теста неверны, — говорит Сейлер, — но позволили СМИ распространить информацию, чтобы напугать конкурентов». В 2017 году Сейлер и несколько других норвежских спортивных ученых опубликовали работу «Новые рекорды человеческой мощности»[228], использовав название знаменитого исследования 1937 года Гарвардской лаборатории утомления, где были зафиксированы самые высокие достоверные значения VO2max (около 90 мл/кг/мин) у велосипедистов и лыжников. Соответствующие значения у женщин примерно на 15% ниже благодаря более высокому уровню жира в организме и более низкому уровню кислородсодержащего гемоглобина в крови; самое высокое зарегистрированное значение было около 78 мл/кг/мин (опять же у лыжниц).
Важное замечание: независимо от того, был ли этот показатель точным, Дели уступил неофициальный рекорд VO2max осенью 2012 года другому норвежцу, 18-летнему велосипедисту Оскару Свендсену[229], который, если верить норвежским СМИ, выдал в лаборатории результат 97,5 мл/кг/мин и через несколько недель выиграл гонку с раздельным стартом среди юниоров на чемпионате мира по велоспорту. После нескольких трудных лет славы в качестве молодого профессионала Свендсен ушел из спорта в 2014 году, в возрасте двадцати лет. VO2max имеет значение, но не он определяет судьбу.
Однако общая картина такова: даже небольшие различия в потреблении кислорода влияют на производительность. Более позднее исследование ученых из Австралийского института спорта[230] подтвердило, что из-за высоты в Канберре снижается не только VO2max, но и спортивные результаты. И наоборот, как мы видели в главе 2, при вдыхании чистого кислорода повышается выносливость, даже в ситуациях (таких как пересечение вплавь Ла-Манша), где острая нехватка кислорода не становится проблемой. Вот почему ученый Яннис Пициладис, ответственный за один из проектов, которые направлены на то, чтобы опередить Nike в подготовке к двухчасовому марафону, в какой-то момент полетел в Израиль, чтобы разведать возможность проведения марафона рядом с Мертвым морем[231], недалеко от самой низкой точки. В этом месте высота на 400 м ниже уровня моря, и воздух там содержит примерно на 5% больше кислорода, чем на уровне моря, что дает потенциальную (хотя и гипотетическую) возможность достичь успеха. Кто же один из ключевых исследователей, доказавших влияние кислорода на повышение производительности? Некто Роджер Баннистер, опубликовавший статью «Влияние добавления кислорода к вдыхаемому воздуху на дыхание и производительность во время физических упражнений» в Journal of Physiology спустя чуть более двух месяцев после преодоления четырехминутного барьера (миля за четыре минуты) в 1954 году. Он обнаружил, что повышение содержания кислорода в воздухе со стандартных 21 до 66% позволило ему вдвое увеличить время до отказа в тесте на беговой дорожке с большим уклоном.
Одно интересное объяснение того, какую роль кислород играет в ограничении возможностей человека, связано с исследованиями «церебральной оксигенации»[232] — притока крови к мозгу, необходимого для обеспечения жизни. Когда вы начинаете тренировку, уровень кислорода в мозге изначально повышается, питая особо активные нейроны, «отдающие команды» мышцам и контролирующие усилия. Затем уровень кислорода выходит на устойчивое плато и держится там до тех пор, пока вы не приблизитесь к своим пределам. Когда вы дышите все интенсивнее, уровень углекислого газа в крови падает, что, в свою очередь, заставляет кровеносные сосуды, ведущие к вашему мозгу, сжиматься (то же происходит, когда вы намеренно дышите слишком глубоко, что приводит к головокружению, и в итоге вы теряете сознание). Возникающая в результате нехватка кислорода в мозге может непосредственно сказаться на работе мышц или способствовать ощущению усталости, сигнализируя о необходимости замедлиться или остановиться.