ческими достижениями с точки зрения длительной физической выносливости всех времен».
Шеклтон не был знаком со всеми этими факторами. Он, конечно, знал, что ему и его людям необходима пища, но остальная внутренняя работа человеческого организма для него оставалась тайной. Однако уже были сделаны первые шаги к ее раскрытию. За несколько месяцев до отплытия корабля Шеклтона «Нимрод» в Антарктиду с острова Уайт, в августе 1907 года, ученые из Кембриджского университета опубликовали отчет об исследованиях молочной кислоты[29], явного врага мышечной выносливости, так знакомого не одному поколению спортсменов. Взгляд на молочную кислоту кардинально изменился за прошедшее столетие (например, внутри организма на самом деле присутствует лактат[30] — отрицательно заряженный ион, а не молочная кислота), но эта статья ознаменовала начало новой эры исследований человеческой выносливости. Если понимать, как работает машина, можно вычислить ее конечные пределы.
Шведский химик XIX века Йёнс Якоб Берцелиус сейчас известен больше всего благодаря тому, что ввел современную систему обозначения химических элементов — H2O, CO2 и т. д. Однако он был первым, кто в 1807 году установил связь между мышечной усталостью и недавно открытым веществом, найденным в кислом молоке. Берцелиус заметил, что в мышцах загнанных на охоте оленей[31] высоко содержание этой молочной кислоты, и количество ее зависело от того, насколько сильно загнано животное перед гибелью. Справедливости ради стоит отметить: только сто лет спустя[32] химики узнали о том, что такое «кислоты». Сейчас нам известно, что лактат из мышц и крови, оказавшись вне организма, сразу вступает во взаимодействие с ионами водорода и образует молочную кислоту. Именно ее уровень измеряли Берцелиус и его последователи, и они считали, что молочная кислота, а не лактат важна при изучении причин усталости. В оставшейся части книги (кроме тех случаев, когда будем освещать историю проблемы) мы будем говорить о лактате.
Что означало наличие молочной кислоты в мышцах оленей, было непонятно, особенно если учесть, насколько мало тогда знали о работе мышц. Сам Берцелиус придерживался теории «виталистической (жизненной) силы»[33], которая, по мнению ученых, приводит в действие живые организмы и существует вне сферы обычной химии. Но витализм постепенно вытеснялся «механистической теорией», согласно которой человеческое тело скорее машина (хотя и очень сложная), которая подчиняется тем же основным законам, что и маятники или паровые двигатели. Серия до смешного примитивных экспериментов, проведенных в XIX веке, постепенно подсказывала, что же приводит в действие эту машину. Например, в 1865 году немецкие ученые во время восхождения на Фолхорн — вершину в Бернских Альпах высотой 2400 м — собрали свою мочу[34], а затем измерили содержание азота в ней. Исследователи пришли к выводу, что один только белок не может обеспечить всю энергию, необходимую для длительной физической нагрузки. По мере накопления таких открытий укреплялось некогда еретическое представление о том, что человеческие пределы — простой вопрос химии и математики.
Сейчас спортсмены проверяют уровень лактата во время тренировок с помощью экспресс-теста, делая небольшой укол (а некоторые компании и вовсе утверждают, что могут измерять лактат в режиме реального времени[35] с помощью пластыря, анализирующего состав пота). Но у первых исследователей даже простое определение наличия молочной кислоты вызывало серьезные затруднения. Берцелиус в 1808 году в книге «Лекции по химии животных» (Fӧrelӓsningar i Djurkemien) на шести страницах изложил свой рецепт: измельчить свежее мясо, протереть его через плотный полотняный мешок, приготовить из этого жидкость, испарить и подвергнуть ее различным химическим реакциям и получить осадок с растворенными свинцом и спиртами. В результате у исследователя остается «густой коричневый сироп, а в конечном счете — глазурь со всеми свойствами молочной кислоты».
Неудивительно, что дальнейшие попытки следовать такой процедуре вызвали путаницу и неоднозначность результатов, которые привели всех в замешательство. Так было и в 1907 году, когда кембриджские физиологи Фредерик Хопкинс и Уолтер Флетчер занялись этой проблемой. «К сожалению, известно, — писали они во введении к статье, — что… едва ли существует важный факт, касающийся образования молочной кислоты в мышцах, который был бы выдвинут одним наблюдателем, но не опровергнут другим». Хопкинс был очень придирчивым экспериментатором и впоследствии прославился как один из первооткрывателей витаминов, за что получил Нобелевскую премию. Флетчер — опытный бегун: в 1900-х он, будучи студентом, одним из первых преодолел трехсотдвадцатиметровый круг[36] во дворе кембриджского Тринити-колледжа, пока старинные часы на здании били двенадцать. Этот факт известен благодаря фильму «Огненные колесницы» (говорят, что Флетчер срезал углы).
Хопкинс и Флетчер погружали исследуемые мышцы в холодный спирт сразу после эксперимента. Это было серьезным достижением: так они добивались сохранения более-менее постоянного уровня молочной кислоты на последующих стадиях, среди которых по-прежнему было измельчение мышцы пестиком в ступке, а затем измерение ее кислотности. При помощи нового точного метода ученые исследовали мышечную усталость, экспериментируя на лягушачьих лапках, подвешенных длинными рядами по десять-пятнадцать пар и соединенных цинковыми крючками. Воздействуя электрическим током на одном конце ряда, они заставляли сокращаться все лапки одновременно. После двух часов периодических сокращений мышцы полностью истощались и были не способны даже слегка дергаться.
Результаты оказались очевидными: истощенные мышцы содержали втрое больше молочной кислоты, чем отдохнувшие, подтверждая подозрение Берцелиуса: это побочный продукт усталости, а возможно, и ее причина. Обнаружился еще один интересный момент: количество молочной кислоты уменьшалось, когда усталые лягушачьи мышцы запасались кислородом, но увеличивалось, когда кислорода не хватало. Наконец-то проявилась вполне современная картина того, что происходит при утомлении мышц, и с этого момента ученые стали быстро двигаться вперед.
Через год важность участия кислорода[37] подтвердил физиолог из Медицинского колледжа больницы Лондона[38] Леонард Хилл, опубликовав статью в British Medical Journal. Он давал чистый кислород бегунам, пловцам, рабочим и лошадям и получил потрясающие результаты. Марафонец пробежал пробную дистанцию 1,2 км, улучшив время на 38 секунд. Лошадь, впряженная в трамвайный вагон[39], смогла взобраться на крутой холм за две минуты и восемь секунд, а не за обычные три с половиной, и не так тяжело дышала наверху.
Один из коллег Хилла даже сопровождал пловца на длинные дистанции Джабиза Вольфе, когда тот пытался стать вторым человеком, пересекшим Ла-Манш. После более тринадцати часов плавания Вольфе был уже готов сдаться, но вдохнул кислород через длинную резиновую трубку, и у него открылось второе дыхание. «Снова пришлось подналечь на весла, чтобы не отставать от спортсмена, — отметил Хилл, — а до этого они то и дело дрейфовали и двигались вместе с приливом». Вольфе, хотя он и был с ног до головы обработан виски и скипидаром и натерт оливковым маслом, пришлось вытащить из воды за какие-то несчастные 400 м от французского берега из-за холода. Он пытался пересечь Ла-Манш двадцать два раза[40], но безуспешно.
По мере того как человек раскрывал тайны сокращения мышц, вырисовывался очевидный вопрос: каковы пределы этих сокращений? Мыслители XIX века обсуждали идею, что «закон природы» определяет максимальный потенциал физических возможностей каждого человека. «У каждого живого существа от рождения есть предел роста и развития во всех направлениях[41], за границы которого оно не может выйти, несмотря ни на какие усилия, — утверждал шотландский врач Томас Клустон в 1883 году. — Рука кузнеца не способна вырасти дальше определенного предела. Игрок в крикет не может увеличивать скорость игры бесконечно, переходя неизбежные пределы». Но что это за пределы? Кембриджский протеже Флетчера, Арчибальд Вивиан Хилл (он ненавидел свое имя[42] и именовал себя как «А. В.») в 1920-х впервые провел достоверные измерения максимальной выносливости.
Может показаться очевидным, что лучший тест на максимальную выносливость — соревнование. Однако результат в соревнованиях зависит от очень многих переменных факторов, например темпа. Возможно, вы обладаете величайшей выносливостью в мире, но, если вы неисправимый оптимист и не можете не сорваться с места в карьер (или трус, который всегда бежит трусцой), время, за которое вы завершите дистанцию, никогда не будет точно отражать то, на что вы физически способны.
Можно частично исключить эту вариативность, если использовать функциональный тест на время до истощения: сколько вы сможете бежать на дорожке с определенной скоростью? Как долго будете поддерживать определенную выходную мощность на велотренажере? По сути, именно так сейчас проводятся исследования выносливости. Но у этого подхода есть недостатки. Главное — все зависит от того, насколько вы мотивированы, чтобы заставить себя работать на пределе возможностей. Кроме того, важно, как вы спали предыдущей ночью, что ели перед тестированием, насколько удобная у вас обувь, а также ряд других отвлекающих факторов и стимулов. Так что это — проверка вашей работоспособности в конкретный день, а не предельной работоспособности в принципе.