Биологические мембраны полупроницаемы: например, молекулы белка слишком крупные, чтобы пройти сквозь нее. Мембраны также остановят заряженные ионы. В диффузии участвуют маленькие молекулы, в том числе молекулы кислорода, углекислого газа, азота и окиси азота. Осмос – главный способ транспортировки воды в клетки и из них. В биологических системах вода с концентрацией растворенных веществ меньше нормы называется гипотонической; больше нормы – гипертонической. Когда клетка попадает в гипотонический раствор, осмос притягивает воду, и клетка разбухает. Это происходит, например, когда клетку помещают в чистую воду. В гипертоническом растворе, таком как соленая вода, молекулы воды покидают клетку, и она сжимается. С помощью осмоса растения забирают воду из почвы. В клетках корней содержатся растворенные вещества, поэтому молекулы воды поступают внутрь, повышая внутреннее давление и делая клетки упругими. Если растение долгое время лишено воды, давление падает, клетки сжимаются, и растение увядает.
Клеточная теория
Клеточная теория – это фундамент современной биологии. Она исходит из того, что клетки – базовые единицы всех живых организмов, которые могут рождаться только из уже существующих клеток.
Основы клеточной биологии как научной дисциплины заложило развитие микроскопии в XVII в. Все последующие столетия ученые наблюдали клетки растений и животных под все большим увеличением. Биологи довольно рано пришли к согласию в том, что живые организмы состоят из базовых единиц, но никто не связывал клетки, увиденные под микроскопом, и клетки, которые составляли тела животных и растений. Французский физиолог Рене Дютроше в конце концов узрел эту связь: в 1824 г. он признал значение отдельных клеток в функционировании живого организма, заявив, что «клетка – это фундаментальный элемент организации».
Маттиас Шлейден преподавал ботанику в Йенском университете в Германии.
Клеточная теория
Считают, что принципы клеточной теории сформулировали двое ученых. В 1838 г. немецкий ботаник Маттиас Шлейден опубликовал «Данные о фитогенезисе», основанные на исследовании растений под микроскопом. Шлейден предположил, что все части растений состоят из клеток. Он также указал на важность ядра в делении клетки и признал, что новые клетки растений формируются из ядер старых.
1. Все живые организмы состоят из одной или более клеток.
2. Клетка – это базовая единица строения и функционирования организма.
3. Клетки появляются из уже существующих клеток.
В 1830-х гг. немецкий физиолог Теодор Шванн работал с тканями животных, в том числе нервными клетками: он рассматривал их под микроскопом и описывал свойства. Одажды двое ученых встретились, чтобы обсудить свою работу, и Шлейден рассказал о роли ядра в делении клетки. Шванн сразу же вспомнил о похожих структурах в клетках животных и осознал связь между ними. В 1839 г. Шванн опубликовал книгу «Микроскопические исследования», в которой утверждал: «Все живые существа состоят из клеток и продуктов клеток». Двое ученых таким образом выдвинули клеточную теорию и сформулировали два из трех основных ее принципов: 1) все живые организмы состоят из одной или более клеток; 2) клетка – это базовая единица строения и функционирования организма.
Основываясь на работе Шлейдена и Шванна, немецкий ученый Рудольф Вирхов пополнил список принципов клеточной теории, постулировав: клетки происходят из уже существующих клеток. Этот вывод приписывают Вирхову, но он опирался на опыты немецкого биолога Роберта Ремака, который наблюдал деление клетки в оплодотворенных икринках лягушки.
На иллюстрации показана структура типичной клетки растения. В отличие от клеток животных, клетки растений имеют стенки, хлоропласты и вакуоли.
На иллюстрации показано строение типичной клетки животного. Внутри мембраны находится водянистая жидкость – цитоплазма. Ядро в центре клетки состоит из генетического материала в виде ДНК. В числе прочих структур – органеллы: митохондии, производящие энергию, эндоплазматический ретикулум и аппарат Гольджи, производящие и транспортирующие питательные вещества.
Свойства клеток
У клеток животных и растений много общих свойств. И у тех, и у других есть ядро, содержащее генетический материал и контролирующее все процессы. Есть и клеточные мембраны, которые регулируют движение воды и растворенных химических веществ внутрь клетки и из нее. Мембрана удерживает жидкую цитоплазму. По сравнению с клетками животных, клетки растений содержат ряд уникальных структур. В частности, клеточные стенки, сформированные из волокон целлюлозы. Это укрепляет и позволяет держаться вместе как кирпичики в стене. Клетки растений также имеют вакуоли – емкости для для воды. Клетки в зеленых частях растений содержат хлоропласт. Внутри этих образований есть зеленый пигмент хлорофилл, поглощающий энергию солнечного света и производящий питательные вещества в ходе фотосинтеза.
Функции клеток
Клетки имеют общие характеристики, но есть и такие, которые наделены специальными функциями. Хороший пример – это красные кровяные тельца. Свой цвет они приобретают благодаря присутствию гемоглобина – молекулы, которая распространяет по телу кислород. У нервных клеток совершенно другая структура: они напоминают проволоку для передачи электрических сигналов, а клетки костей окружены сетью кристаллов фосфата кальция, которые придают им прочность. Все они рождаются из неспециализированных стволовых клеток, способных трансформироваться или видоизменяться в любой тип клеток, необходимый телу.
Теодор Шванн разработал базовый принцип клеточной теории: все живые существа состоят из клеток. Предложенная им классификация клеток разных видов заложила основы современной гистологии.
Рисунки клеток Вирхова, подготовленные для цикла лекций в 1858 г.
Сердце
Этот мускулистый орган перекачивает кровь по телу. Его приводит в действие сердечная мышца, которая заставляет его биться от зачатия до смерти. Как правило, она сокращается около 100 000 раз каждый день.
В человеческом сердце четыре камеры: два предсердия и два желудочка. В левую сторону сердца поступает насыщенная кислородом кровь из легких, оттуда она перекачивается во все части тела, поскольку кислород используется в клеточном дыхании. Правая сторона получает обедненную кислородом кровь со всего тела и перекачивает в легкие, чтобы снова наполнить кислородом. Две части сердца разделены внутренней перегородкой. Строение сердца и циркуляцию крови по организму изучал английский анатом Уильям Гарвей, а чешский физиолог Ян Эвангелиста Пуркинье открыл волокнистые ткани (сегодня они называются волокнами Пуркинье), проводящие к желудочкам сердца электрические импульсы. Импульсы обеспечивают синхронное сокращение – так становится возможным комплексный сердечный ритм.
Схема 1881 г. показывает основные кровеносные сосуды и камеры сердца.
В середине XIX в. Пуркинье был одним из самых известных в мире ученых. Он продемонстрировал роль волокон Пуркинье в сердце, а также открыл крупные нервные клетки (клетки Пуркинье) в коре мозжечка и ввел термины «плазма» – жидкая составляющая крови, – и «протоплазма» – содержимое клетки. Пуркинье также создал первое в мире отделение физиологии – в 1839 г. во Вроцлавском университете в Польше.
Две системы
У человека два круга кровообращения. Малый (легочный) круг кровообращения переносит кровь к легким и от них, а по большому (системному) кругу кровообращения кровь поступает к остальным частям тела и возвращается от них. Правое предсердие получает кровь, лишенную кислорода, по двум крупным венам – нижней полой вене (идущей от нижней части тела) и верхней полой вене (от тела выше диафрагмы). От правого предсердия кровь поступает через трехстворчатый клапан в правый желудочек. Сердечные клапаны не позволяют крови течь в обратном направлении. От правого желудочка она перекачивается через клапан в ствол легочной артерии, которая разделяется на две артерии, отходящие от легких. В легких артерии разветвляются на все более мелкие кровеносные сосуды, которые собирают кислород из альвеол. Правый желудочек сокращается недостаточно сильно, чтобы обогащенная кислородом кровь разошлась из легких по всему организму, поэтому она возвращается к сердцу и получает новый импульс. Она проходит по четырем легочным венам – по две на каждое легкое – и входит в левое предсердие. Продолжая путь через двустворчатый клапан, кровь поступает к левому желудочку. Мышца, покрывающая эту камеру, толще, чем мышца правого желудочка, поскольку ей надлежит подавать кровь не только к легким, но и ко всем органам тела. От левого желудочка насыщенная кислородом кровь течет через клапан аорты и через аорту, самую крупную артерию в человеческом теле, покидает сердце.
Сердечный цикл подразумевает, что при каждом ударе сердца мышца волнообразно сокращается. Кровь поступает в обе полости в верхней части сердца, и сердечная мышца сокращается, посылая кровь в желудочки ниже; и в этот момент сокращаются желудочки, выталкивая кровь в сосуды.
Чередование поколений
Жизненный цикл простых растений состоит из гаметофитной фазы, когда они производят половые клетки, и следующей спорофитной фазы, когда бесполым способом они производят споры. Это называется чередованием поколений.
Немецкий биолог Вильгельм Гофмейстер описал чередование поколений в 1851 г., но чтобы полностью понять этот процесс требовались достижения генетики. Спорофит – это диплоидная фаза растения, то есть на этом этапе клетка содержит двойной набор генов, по одному от каждого родителя. Спорофит производит споры – крошечные частички, которые разносит ветер или вода. Споры – гаплоидны, то есть содержат только один набор генов и вырастают в гаметофитную структуру, производящую гаметы (яйцеклетки и сперматозоиды, также гаплоидные). При слиянии гаметы возникает диплоидная клетка, которая затем становится спорофитом. У мхов и печеночных мхов доминирующее поколение гаплоидное, поэтому гаметофит мы считаем основным растением. У растений со внутренними жилками, таких как, например папоротники, главное растение – спорофит.