Взламывая биологию — страница 26 из 27

Биоразнообразие

Биоразнообразие – это множество животных, растений и других форм жизни на определенной территории или во всей биосфере Земли, включая разнообразие внутри вида, между видами и разнообразие экосистем.

Термин «биоразнообразие» ввел американский биолог Эдвард О. Уилсон в 1980-х гг. Концепция широко распространилась за пределы научного сообщества, поскольку в мире росло беспокойство о будущем биосферы Земли. Говоря общо, биоразнообразием следует считать общее число видов и подвидов организмов. (Подвиды – это генетически отличные популяции организмов, которые не сформировали достаточно уникальных признаков, чтобы считаться полноценным видом.) На данный момент описано около 1,9 млн форм жизни на нашей планете, в том числе более 1 млн насекомых, около 310 000 растений и 65 000 позвоночных. Млекопитающие составляют относительно небольшую долю – менее 5500 видов. Многие организмы еще предстоит открыть, и, хотя результаты подсчетов разнятся, общее количество видов на Земле оценивают в 8 млн. Наибольшее их количество проживает в девственных тропических лесах, тропических коралловых рифах и в Капской области в Южной Африке. Биоразнообразие всегда подвергалось воздействию природных (неантропогенных) факторов, в том числе изменениям климата, колебаниям уровня моря и даже столкновениям с астероидами, которые приводили к массовым вымираниям. Имеются данные, что деятельность человека – разрушение среды обитания, слишком интенсивное использование природных ресурсов для производтва продуктов питания, изменение климата, загрязнение окружающей среды и воздействие инвазивных видов – ведет к пиковому массовому вымиранию со времен динозавров.


Хотя тропические леса покрывают менее 2 % поверхности Земли, они являются домом примерно для половины всех известных видов живых организмов.


Биоразнообразие коралловых рифов невероятно, и оно находится под угрозой из-за повышения температуры воды. Здесь обитают более четверти океанических видов.


Домены

Линней разделил живых существ на два царства – растения и животные. Сегодня верхний уровень в классификации организмов – это домен, или надцарство. Большинство ученых согласны в том, что существует три домена, хотя некоторые склоняются к пяти.

Исторически различали пять царств всего живого: бактерии, вирусы, грибы, растения и животные. Американский микробиолог Карл Вёзе ввел понятие надцарства, или домена. В 1977 г. он обнаружил, что прокариоты (одноклеточные организмы без органелл) делятся на две группы: прокариоты, живущие при высоких температурах или выделяющие метан, имеют уникальные генетические признаки, отличающие их от бактерий и эукариотов. Так Вёзе открыл совершенно новую разновидность живых организмов – археи.


Упрощенная классификация Карла Вёзе с тремя доменами. Животные представлены всего одной из десятка родословных.


ЭКСТРЕМОФИЛЫ

В 1970-х гг. ученые стали находить организмы в средах, которые ранее считались враждебными. Большинство из них – это микроорганизмы, в частности бактерии, но встречаются также черви, насекомые и ракообразные. К числу экстремофилов относятся ацидофилы, процветающие в кислых средах, с pH = 3 или ниже (жидкостью с таким уровнем кислотности можно ожечь кожу). Гидротермофилы живут в воде с температурой выше 80 °C, рядом с гидротермальными выходами на дне океана. Другие встречаются глубоко под землей, под ледниками, в экстремально щелочных средах или у кипящих гейзеров.

Археи, бактерии и эукариоты

В 1990 г. Вёзе предложил подразделить все живые организмы на три домена, которые мы знаем сегодня, – археи, бактерии и эукариоты. Каждый домен отмечен характерной рибосомальной рибонуклеиновой кислотой (рРНК) внутри клеток. Все члены домена архей – крошечные одноклеточные организмы, в клетках которых отсутствует ядро. К археям относятся галофилы, выживающие в очень соленой воде, и гипертермофилы, переносящие высокие температуры. Клетки этих микроорганизмов адаптировались к суровым условиям. У бактерий ядро клетки тоже отсутствует, но структура их рРНК отличается от рРНК архей. Домен бактерий очень разнообразен и включает фотосинтетические цианобактерии и литотрофов, питающихся неорганическими веществами. Эукариоты составляют отдельный домен, куда входят растения, животные, грибы и одноклеточные протисты. Вирусы, не имеющие клеток, Вёзе в своей классификации не учел. Не все соглашаются с разделением на три домена. В 2012 г. шведский микробиолог Стефан Лукета предложил альтернативные пять доменов, добавив прионы (инфекционные белки) и вирусы.

Клонирование

Серия процессов, позволяющая получить генетически идентичные копии живого организма, известна как клонирование. Существует три метода. Первым клонированным млекопитающим стала овца по имени Долли. Это случилось в 1996 г.

В природе клоны встречаются часто. Например, растения и одноклеточные организмы, которые воспроизводятся бесполым путем, дают потомство с идентичным генетическим строением. Клонами друг друга являются и однояйцевые близнецы. Однако термин «клонирование» обычно применяют для обозначения методов получения искусственных копий генетического материала и организмов. Клонирование генов – это получение копий ДНК для использования в медицине и исследованиях. Известна польза терапевтического клонирования для медицины: с его помощью создают эмбриональные стволовые клетки. Такие клетки используются для строительства, поддержания и восстановления организма. Так как все это происходит естественным образом, их применяют для лечения поврежденных или зараженных органов. Тем не менее стволовые клетки одного человека, пересаженные другому, провоцируют иммунный ответ. Ученые рассматривают клонирование как способ создать стволовые клетки, генетически идентичные организму, который их использует. В будущем с помощью этих клеток можно было бы восстанавливать ткани и даже заменять органы целиком.


На рисунке показаны основные этапы репродуктивного клонирования, позволившего создать Долли. Клетку взяли из вымени биологической матери Долли. Ядро извлекли из яйцеклетки другой овцы. Затем ядро клетки матери Долли ввели в яйцеклетку и спровоцировали деление. Яйцеклетка – теперь уже эмбрион – была подсажена третьей овце, суррогатной матери. Долли родилась естественным путем в Рослинском институте в Эдинбурге, в Шотландии.


Овечка Долли родилась здоровой и впоследствии принесла шесть ягнят. Она прожила всего шесть лет и умерла от заболевания легких. Вероятно, болезнь возникла из-за того, что Долли проводила слишком много времени в помещении – она была очень ценной особью, и ее не могли оставить в поле. Однако было также высказано предположение, что хромосомы Долли старше ее – они не обновились, переходя от матери. Не исключено, что это стало причиной ранней смерти.


Овечка Долли

В репродуктивном и терапевтическом клонировании используют схожие методы, но первое нужно для «копирования» животного целиком. Самое знаменитое клонированное животное – овечка Долли, которая родилась в июле 1996 г. Проектом руководили генетики Иэн Уилмут и Кит Кэмпбелл. Он увенчался бесспорным успехом, но репродуктивное клонирование – это очень сложный процесс. Долли была единственной выжившей особью, хотя ученые предприняли 227 попыток. Другие эксперименты по клонированию проводили с рыбами, свиньями, кошками, крысами и верблюдом-дромадером. Ученые клонировали дикого быка гаура, находящегося на грани исчезновения, чтобы продемонстрировать возможности науки для увеличения популяций редких животных и даже воссоздания вымерших. Генетики берут образцы генетического материала у вымирающих животных в надежде, что в случае необходимости их можно будет клонировать.

Геном человека

Совокупность генов, заключенную в одинарном наборе хромосом, называют геномом. Наследственный материал человека представлен 23 парами хромосом – ДНК в ядре клетки и внутри митохондрий.

Участники проекта «Геном человека» смогли составить почти полную последовательность 3 млрд пар оснований в ДНК человека. Проект начался в 1990 г., тогда ученые взяли образцы ДНК у анонимных доноров, а около 70 % материала происходило от одного человека из Баффало, штат Нью-Йорк. Первый набросок опубликовали в 2001 г. Между геномами разных людей существуют значительные различия (это не касается однояйцевых близнецов), но они затрагивают только порядка 0,1 % всего генома (что эквивалентно нескольким миллионам различий). Расхождение между людьми и шипманзе, нашими ближайшими родственниками, составляет около 4 %. У людей около 19 000–20 000 генов, кодирующих белок, но биологическая функция их продуктов еще совершенно не изучена. Ученые ожидают, что, поняв назначение генов, они смогут спровоцировать развитие медицины и сделать революционные открытия в области хронологии эволюции человека.

Митохондриальная ДНК человека (мтДНК) могла бы еще больше рассказать о наших предках. Так как ее воспроизведение не так строго контролируется, как воспроизведение ДНК в ядре клетки, пропорция мутаций в ней куда выше. Анализ мтДНК позволил отследить тропы миграции человека. В 2016 г. исследование генома показало, что всех не-африканцев можно отследить вплоть до популяции, которая покинула Африку 60 000 лет назад.


Фрагмент генетической карты 16-й хромосомы, которая имеет около 90 млн пар оснований и соответствует примерно 3 % всей ДНК в клетках человека. 16-я хромосома содержит около 2000 генов.


Эпигенетика

Эпигенетика изучает, как проявление, или экспрессия, генов регулируется факторами окружающей среды. При этом последовательность ДНК не меняется, хотя новые признаки могут передаваться следующим поколениям.

Генетика произвела революцию и навсегда изменила биологию, но добавила и путаницы: можем ли мы сбежать от наших генов или все запрограммировано заранее? Затем появилась эпигенетика и запутала все еще больше. Центральная аксиома генетики заключается в том, что сам организм никогда не изменяет наследуемый генетический материал, или ДНК, которая кодирует наши гены. Что бы вы ни унаследовали от родителей, вы передадите это своим детям. Этот факт лежит в основе наших знаний о генах и фомирует некоторые взгляды на эволюцию, популяционную генетику и биологию развития. (Конечно мутации, или ошибки в генах, случаются, но это происходит при копировании непроизвольно или в результате внешнего воздействия, меняющего химию ДНК, а не по инициативе организма.)