Взломавшая код. Дженнифер Даудна, редактирование генома и будущее человечества — страница 44 из 90

CRISPR Therapeutics, основанная Эмманюэль Шарпантье. После инъекции у Грей резко участилось сердцебиение, и некоторое время ей было сложно дышать. “В тот момент мне стало немного страшно и тяжело, – сказала она журналисту NPR Робу Стейну, который получил разрешение следить за ее лечением. – Потом я заплакала. Но это были слезы счастья”[268].


Доктор Хайдар Франгул из Научно-исследовательского института Сары Кэннон в Нэшвилле с Викторией Грей


Сегодня внимание к CRISPR во многом объясняется потенциалом системы к внесению в клетки человека наследуемых изменений или к редактированию зародышевой линии. Такие изменения передаются в клетки всех будущих потомков человека и могут в будущем преобразить человеческий род. Редактированию подвергаются гаметы эмбрионов на ранних этапах развития. Именно так CRISPR в 2018 году применили к близнецам из Китая, и этой темы, требующей отдельного обсуждения, я коснусь позже. В этой главе я сосредоточусь на способах применения CRISPR, которые (по крайней мере, до поры до времени) будут наиболее широко распространены и привлекательны: на таких случаях, как лечение Виктории Грей, когда CRISPR используется для редактирования лишь некоторых клеток тела, не передающих свои гены в следующее поколение (такие клетки называются соматическими). Изменения в генах соматических клеток не наследуются. Для этого можно брать клетки у пациента и затем редактировать и возвращать их в организм (ex vivo), а можно помещать инструмент редактирования на базе CRISPR в организм пациента (in vivo).


Серповидноклеточная анемия – один из самых подходящих случаев для редактирования генома ex vivo, поскольку при этом заболевании поражаются клетки крови, которые можно легко забрать из организма и вернуть обратно. Болезнь вызывается мутацией единственной буквы из более чем трех миллиардов спаренных оснований в ДНК человека, в результате которой возникает аномалия в белке гемоглобине. Нормальный гемоглобин формирует круглые и гладкие кровяные тельца, способные легко проходить по сосудам и переносить кислород из легких к остальным частям тела. Но аномальный гемоглобин формирует длинные волокна, которые искажают красные кровяные тельца, отчего они слипаются и изгибаются в форме серпа. Кислород не поступает в ткани и легкие, что вызывает сильные боли. В большинстве случаев больной умирает, не доживая до пятидесяти лет. Серповидноклеточной анемией страдают более четырех миллионов человек во всем мире, причем около 80 % из них живет в Африке и около 90 тысяч – жители США, в основном афроамериканцы.

Простота генетической ошибки и серьезность синдрома делает его прекрасным кандидатом на лечение путем редактирования генома. Работая с Викторией Грей, врачи выделили стволовые клетки из ее собственной крови и отредактировали их, применив CRISPR, чтобы активировать ген, который обычно работает в клетках крови только в период эмбрионального развития. Такой эмбриональный гемоглобин нормален, поэтому, если генетическая модификация оказывается действенной, у пациентов начинает вырабатываться собственная хорошая кровь.

Через несколько месяцев после введения отредактированных клеток Грей приехала в нэшвиллскую больницу, чтобы узнать, помогает ли лечение. Она была настроена оптимистически. После получения отредактированных клеток ей ни разу не понадобилось переливание крови и приступы боли ее тоже не мучили. Медсестра ввела иглу и наполнила кровью несколько пробирок. Грей нервничала, ожидая результатов. В конце концов врач пришел сообщить ей новости. “Мне очень понравились результаты ваших сегодняшних анализов, – сказал он. – По ним видно, что у вас начал вырабатываться эмбриональный гемоглобин, и это замечательно”. Ее кровь теперь примерно на половину состояла из эмбрионального гемоглобина со здоровыми клетками.

В июне 2020 года Грей получила еще более радостную новость: судя по всему, улучшение длительное. По истечении девяти месяцев она не испытала ни одного приступа боли из-за серповидноклеточной анемии и ни разу не нуждалась в переливании крови. Анализы показали, что 81 % клеток ее костного мозга производили нормальный эмбриональный гемоглобин, а значит, изменения в генах сохранились[269]. “Школьные и университетские выпускные, свадьбы, внуки – я думала, что ничего этого не увижу, – сказала она, узнав о результатах. – Теперь я смогу помочь своим дочерям выбрать свадебные платья”[270]. Это была важнейшая веха: очевидно, система CRISPR вылечила генетическую болезнь человека. Находясь в Берлине, Шарпантье слушала запись прочувствованного интервью, которое Грей дала корреспонденту NPR. “Слушая ее, я радостно осознавала, – говорит она, – что дитя, которое я помогла создать, редактирование на базе CRISPR, избавило ее от страданий”[271].

Доступность

Подобные способы применения CRISPR, вероятно, помогут спасать жизни. Но они, несомненно, стоят немалых денег. На лечение единственного пациента может уходить миллион долларов, а то и больше, по крайней мере на первых порах. В связи с этим применение CRISPR на благо людям может обанкротить систему здравоохранения.

Даудна занялась этой проблемой после беседы с группой американских сенаторов, состоявшейся в декабре 2018 года. Встреча в Капитолии прошла через несколько недель после объявления о том, что в Китае родились “CRISPR-близнецы” с наследуемыми изменениями генома, и Даудна ожидала, что там будет обсуждаться эта громкая новость. Сначала так и было. Однако, к ее удивлению, участники дискуссии очень быстро переключились с опасностей наследуемого редактирования генома на потенциал применения редактирования генома для лечения болезней.

Даудна сообщила сенаторам, что на базе CRISPR совсем скоро будет разработана терапия серповидноклеточной анемии, и собравшиеся оживились, но сразу же забросали ее вопросами о стоимости такого лечения. “От серповидноклеточной анемии в США страдает 100 тысяч человек, – отметил один сенатор. – Разве мы можем позволить себе тратить по миллиону долларов на пациента? Так у нас никаких денег не хватит”.

Даудна решила, что обеспечить доступность терапии серповидноклеточной анемии должен ее Институт инновационной геномики. “Слушание в Сенате стало для меня поворотным моментом, – говорит она. – Я и раньше много думала о затратах, но не так пристально”. Вернувшись в Беркли, она провела серию встреч, на которых обсуждала с членами своей команды, как сделать обеспечение широкого доступа к терапии серповидноклеточной анемии новой главной задачей их миссии[272].

Ориентируясь на государственно-частное партнерство, благодаря которому доступной стала вакцина от полиомиелита, Даудна связалась с Фондом Билла и Мелинды Гейтс и Национальными институтами здоровья, недавно объявившими о заключении партнерства в рамках инициативы “Вылечим серповидноклеточную анемию” и выделении финансирования в объеме 200 миллионов долларов[273]. Основная научная цель инициативы состоит в том, чтобы найти способ редактировать серповидноклеточную мутацию в организме пациента, не производя забор костного мозга. Для этого можно ввести в кровь пациента молекулу, осуществляющую редактирование генома, заранее снабдив ее адресным маркером, который направит ее прямо к клеткам костного мозга. Самое сложное – найти подходящий механизм доставки такой молекулы, например задействовав вирусоподобную частицу, которая не спровоцирует иммунный ответ организма.

Если инициатива обернется успехом, масса людей сможет исцелиться от страшной болезни, а здравоохранение станет более справедливым. От серповидноклеточной анемии в мире в основном страдают африканцы и афроамериканцы. Медицинское обслуживание этих групп населения традиционно оставляет желать лучшего. Хотя генетическая причина серповидноклеточной анемии была установлена раньше, чем причина любого подобного заболевания, новых методов лечения не появлялось. Так, на борьбу с кистозным фиброзом, от которого страдают по большей части белые американцы и европейцы, выделяется в восемь раз больше средств от государства, благотворительных организаций и фондов. Предполагается, что, имея большое будущее, редактирование генома преобразит медицину. Опасность в том, что в результате усилится разрыв между богатыми и бедными в сфере здравоохранения. Цель запущенной Даудной инициативы по обеспечению доступности терапии серповидноклеточной анемии состоит в том, чтобы этого избежать.

Рак

Помимо лечения заболеваний крови, таких как серповидноклеточная анемия, CRISPR применяется для борьбы с раком. Пионером в этой области выступает Китай, который на два-три года опережает США в разработке методик лечения и проведении клинических испытаний их эффективности[274].

Первым терапию получил страдающий от рака легких пациент из Чэнду, 14-миллионного города в провинции Сычуань на западе Китая. В октябре 2016 года команда врачей забрала из крови пациента некоторое количество Т-лимфоцитов, или белых кровяных телец, которые помогают организму бороться с болезнями и поддерживать иммунитет. Далее врачи применили систему CRISPR-Cas9, чтобы отключить ген, который производит белок PD-1, останавливающий иммунный ответ клетки. Иногда раковые клетки активируют PD-1, защищая себя от иммунной системы. При использовании CRISPR для редактирования гена Т-лимфоциты пациента начинают с большей эффективностью убивать раковые клетки. За год Китай провел семь клинических испытаний с применением этой техники[275].

“Думаю, это станет поводом к биомедицинской дуэли Китая и США, напоминающей космическую гонку прошлого”, – сказал Карл Джун, авторитетный исследователь рака из Пенсильванского университета, который в то время никак не мог получить от властей одобрение на проведение подобного клинического исследования. В конце концов он и его коллеги запустили исследование и сообщили о предварительных результатах в 2020 году. Их метод, примененный для лечения трех пациентов, страдающих от рака на поздних стадиях, был сложнее китайского. Они выключили ген PD-1 и также внедрили в Т-лимфоциты ген, который брал на прицел опухоли пациентов.