На палубе мы не узнали ничего нового. Корабль постепенно заливало водой, и переборки грозили вот-вот рухнуть. Плотник из корабельной команды делал героические усилия, чтобы спасти положение (его попытки увенчались успехом: переборки действительно выдержали переезд через Ла-Манш, и мы благополучно добрались до Гавра). В ту ночь всем приказали остаться на палубе. Мы спали, не снимая спасательных поясов, каждый около шлюпки, в которой ему предназначалось место в случае катастрофы. Помню, что ночью кто-то уронил мне на голову бутылку.
На следующее утро мы без всяких приключений высадились в Гавре. Оказалось, что корабль поврежден гораздо серьезнее, чем предполагалось: понадобилось несколько месяцев на то, чтобы привести его в порядок и снова спустить на воду. На берегу меня ждала почта и в том числе письмо от Фреше с сообщением, что он предпочел бы встретиться со мной немного позже. Недолго думая, я вновь пересек Ла-Манш, высадился в Саутгемптоне и поехал в Кембридж.
В Кембридже я застал нескольких своих старых друзей. Д-р Бернар Мусцио охотно приютил меня у себя. И он и его жена занимались психологией и работали в Австралии. Я познакомился с ними еще в студенческие годы в Кембридже; позднее, во время войны, они приезжали в Бостон с английской военной миссией. Я навестил еще некоторых знакомых и побывал у Харди, который как раз собирался переехать в Оксфорд, где он получил кафедру.
Вообще я убедился, что в Кембридже меня не забыли. Во всяком случае, старые друзья встретили меня с такой сердечностью, о которой я не смел и мечтать в Гарварде. Официально я никогда не числился студентом Кембриджа. В свое время мне просто разрешили посещать лекции, не требуя выполнения никаких формальностей, поскольку об этом существовала специальная договоренность между Гарвардским и Кембриджским университетами. Несколько лет спустя я как-то спросил у Джесси Уайтхед, дочери Альфреда Норта Уайтхеда, имею ли я право называться кембриджцем. «Мне кажется, что в вашем положении, — сказала она, — правильнее всего считать себя незаконным сыном alma mater[29]». Теперь я с радостью убедился, что alma mater гостеприимно принимает в своем доме внебрачных детей.
Пробыв несколько дней в Кембридже, я уехал в Париж. Дешевая гостиница неподалеку от Лувра, в которой я остановился, поражала отвратительными санитарно-гигиеническими условиями. Но вегетарианские привычки не причиняли мне в Париже особенных хлопот: на каждом шагу здесь встречались дешевые рестораны, в которых подавали доброкачественные и вкусные овощные блюда. В отличие от Кембриджа, никаких друзей в Париже у меня не было, французским языком я владел ровно настолько, чтобы кое-как объясниться, может быть, поэтому парижские дома казались мне укрепленными крепостями, выстроившимися сомкнутым строем по обеим сторонам улиц и совершенно неприступными для иностранца. Оживленные кафе, попадавшиеся на каждом шагу, и своеобразная уличная жизнь ежеминутно ранили мой юношеский пуританизм. Я чувствовал себя несчастным и мечтал о возвращении домой. Все свободное время, а у меня его было более чем достаточно, я бродил по городу, иногда заходя в музеи. Особенно привлекательным казался мне Музей Центральной школы искусств и ремесел (Ecole Centrale des Arts-et-Metiers). Я узнал о его существовании от одного американского друга, не раз бывавшего во Франции. Он рассказывал, что в этом музее, где покрытые пылью экспонаты расставлены с типично французской бессистемностью, собраны любопытные реликвии, связанные с великими изобретениями XIX столетия, и различные приборы, с помощью которых производились наиболее замечательные научные эксперименты.
Фреше назначил мне первое свидание в лицее на бульваре Сен-Мишель, где он принимал экзамены, а потом пригласил позавтракать с ним в эльзасском brasserie[30] там же на бульваре. Усатый, мускулистый, среднего роста, Фреше внешне походил на спортсмена. Во время войны он служил в армии переводчиком (он хорошо знал английский язык). Фреше, так же как и я, любил пешие прогулки, и тут мы сразу нашли общий язык. Но он все еще не мог принять меня в Страсбурге, — поэтому я решил ненадолго поехать в Бельгию, чтобы навестить своих друзей. Я застал их в Лувене. Они только что привели в порядок свой прекрасный старый дом, в котором во время войны жили немецкие офицеры, приведшие его в мерзкое состояние. К сожалению, я приехал в очень неудачный момент: у них как раз гостили ректор Гарвардского университета Э. Л. Лоуэлл и его жена. Из-за этого меня в основном препоручили детям. Большую часть времени я гулял с младшим сыном хозяев, который только что провел год в Гарвардской юридической школе. Он водил меня по городу, где мы на каждом шагу натыкались на следы пожаров и разрушений. Я осмотрел руины библиотеки, неф церкви, наполовину скрытый от глаз еще не разобранным эшафотом; часто мы бродили по окрестностям и разговаривали.
Освободившись от оков гарвардской дисциплины, мой спутник с жаром нападал на некоторые стороны английской и американской системы обучения юристов. Ему гораздо больше нравилась юриспруденция тех стран, которые позаимствовали свое законодательство у римлян; он считал, что более естественно подводить каждое дело под определенный закон, чем заниматься розысками прецедентов[31].
Пробыв несколько дней в Бельгии, я отправился в Страсбург, решив ехать через Люксембург и заодно побывать в стране железа[32]. Для меня было большим облегчением очутиться среди людей, охотнее говоривших по-немецки, чем по-французски, так как в этом языке я чувствовал себя гораздо более уверенно.
В Страсбурге я снял комнату с пансионом в новой части города. Каждый или почти каждый день я проводил несколько часов у Фреше в маленьком садике около его дома рядом с Илль-Рейнским каналом[33].
В работах Фреше имелось несколько положений, которые мне хотелось развить дальше. Его подход к обобщенным пространствам вовсе не использовал того, что в математике называется «координатами». Иначе говоря, Фреше даже и не пытался представлять точки своих пространств в виде совокупностей чисел. В координатном представлении пространства каждой паре точек, расположенных на концах прямолинейного отрезка, естественно сопоставляется своя совокупность чисел, получаемая вычитанием чисел, описывающих одну из этих точек, из чисел, описывающих другую. В обычной геометрии на плоскости или в трехмерном пространстве такой метод сопоставления определенных чисел каждому прямолинейному отрезку, задаваемому парой его конечных точек, является основой векторного исчисления. В обычном трехмерном пространстве задание вектора, соединяющего какую-либо неподвижную точку с некоторой другой, сводится к указанию, насколько надо продвинуться сперва на север (или на юг) от первой точки, затем на запад (или на восток) и, наконец, после этого вверх (или вниз) для того, чтобы попасть в эту другую точку.
Векторное исчисление не очень новая область математики. Более полутораста лет тому назад люди уже знали, что в трехмерном пространстве существуют «направленные величины» (условно говоря, «величины со стрелками»), которые можно складывать. Так, например, если сделать один шаг в направлении одной стрелки, а затем второй в направлении другой, то совокупность двух шагов можно рассматривать как один «суммарный» шаг в некотором новом направлении. Мы не можем здесь останавливаться на множестве других операций, которые математики умеют производить с такими «направленными величинами». Существенно только подчеркнуть, что, как уже давно было известно, подобное «векторное исчисление» возможно и в пространствах, число измерений которых превосходит три, и даже в бесконечномерных пространствах.
Созданная Фреше общая теория перехода к пределу и дифференцирования применима ко многим различным пространствам и в том числе ко всем векторным пространствам. Однако она вовсе не требует, чтобы элементы пространства обязательно рассматривались как «отрезки со стрелкой». Тем не менее класс векторных пространств представляет собой весьма существенную область приложения общей теории Фреше и, безусловно, заслуживает специального выделения при помощи соответственно подобранной системы аксиом. Фреше, который не считал векторные пространства более важными, чем другие «обобщенные пространства», не пытался продвинуться в этом направлении, я же с горячностью взялся за дело, решив довести его до конца. Теория, к которой я пришел, оказалась тесно связанной с так называемой теорией групп, изучающей правила комбинирования последовательных преобразований любой совокупности объектов; фактически она представляла собой интересный специальный раздел этой весьма общей теории.
Мне удалось построить полную систему аксиом, определяющую всевозможные векторные пространства. Работа понравилась Фреше, но не произвела на него особенно сильного впечатления. Однако через несколько недель, увидев в польском математическом журнале статью Стефана Банаха, содержащую точно те же результаты — не более и не менее общие, — он страшно разволновался. Банах сделал то же, что и я, но на несколько месяцев раньше. Поскольку трудились мы совершенно независимо, полная самостоятельность обеих работ не вызывала никаких сомнений.
В результате в течение некоторого времени изученные мной и Банахом пространства так и назывались пространствами Банаха-Винера. С тех пор прошло тридцать четыре года, на протяжении которых теория этих пространств не переставала привлекать внимание исследователей. Но хотя за это время появилось немало относящихся к ней работ, только сейчас начинает полностью выявляться ее значение в разнообразных разделах математики.
Какое-то время я еще продолжал трудиться в этой области и даже опубликовал одну-две работы, но постепенно увлекся совсем другой тематикой. Поэтому сейчас такие векторные пространства совершенно справедливо называют именем одного Банаха.