Я, безусловно, был одним из родителей этого ребенка, выношенного не в чреве женщины, а в голове мужчины, но по некоторым соображениям я в конце концов от него отказался. Во-первых, мне не хотелось торопиться, во-вторых, не хотелось изо дня в день внимательно следить за литературой. При создавшейся тогда ситуации то и другое было совершенно необходимо, так как иначе я не мог быть уверен, что Банах или кто-нибудь другой из его польских учеников уже не получили те или иные интересные данные, которые я еще только собираюсь опубликовать. Каждая математическая работа делается под некоторым давлением, но когда это давление усиливается еще за счет соревнования, в котором многое зависит от чистой случайности, оно становится для меня нестерпимым.
Существует, кроме того, еще одно обстоятельство, которое я всегда учитываю, принимаясь за ту или иную работу. Я говорю сейчас о той стороне математического творчества, к которой большинство относится весьма пренебрежительно и которую я называю математической эстетикой. Необходимость ответить на вопрос, что именно я имею в виду, ставит передо мной очень трудную задачу: я должен рассказать людям, не занимающимся математикой, не только о сущности того, что я сделал, но и о том, как я лично к этому отношусь. Для этого мне придется объяснить, почему некоторые проблемы, считавшиеся в течение долгого времени интересными, не только не вызывали у меня ни малейшего желания заняться ими, но оказались совершенно непригодными для приложения моих сил и способностей.
Тут передо мной возникают трудности, с которыми в той или иной форме сталкивается каждый ученый, добившийся серьезных успехов в такой сложной и в высшей степени индивидуальной области творчества, как математика, и возымевший намерение рассказать о своей жизни. Композитор, говоря о себе, не может ничего не сказать о технике композиции, гармонии и контрапункте, составляющих сущность его работы, хотя, за исключением профессиональных музыкантов, эту сторону его творчества сумеют оценить лишь немногие постоянные слушатели, да и то в весьма незначительной степени. Писатель или художник, задумавший написать свою автобиографию, сталкивается с этой же проблемой. Правда, он может утешить себя мыслью, что наиболее образованная часть общества все-таки в состоянии оценить результаты его творчества. И тем не менее ни один писатель и ни один художник не может считать, что честно написал свою автобиографию, если он не рассказал о своем творчестве того, что по-настоящему могут оценить только его товарищи по работе, да и то не все, а лишь наиболее квалифицированные из них.
При выполнении этой сложной задачи у представителей искусства есть огромное преимущество перед учеными. Оно заключается в том, что художнику или музыканту гораздо легче привлечь внимание рядового читателя, чем математику. Легче хотя бы потому, что большинство людей, независимо от того, занимаются ли они сами художественным творчеством или нет, считает, что некоторая осведомленность в вопросах искусства является признаком общей культуры. А кроме того, читатель, который не в состоянии разобраться во всех технических ухищрениях, с помощью которых достигается тот или иной художественный эффект, вполне способен ощутить эмоциональное воздействие искусства, а этого уже совершенно достаточно для того, чтобы искренне заинтересоваться процессом создания тех произведений, которые обычно доступны глазам и ушам непосвященных лишь в совершенно законченном виде.
Специфическая трудность, с которой сталкивается математик, пишущий свою автобиографию, заключается в том, что большинство так называемых культурных людей, не связанных с математикой по роду своих занятий, считает совершенно допустимым не иметь об этой науке ни малейшего представления. Математика для них — нечто в высшей степени скучное, сухое и отвлеченное. Если о ней когда-нибудь вспоминают, то она, в лучшем случае, ассоциируется с неким подсобным аппаратом физики или с работой статистиков; а в худшем — приравнивается к занятию бухгалтерией. И уж, конечно, едва ли кто-нибудь из нематематиков в состоянии освоиться с мыслью, что цифры могут представлять собой культурную и эстетическую ценность или иметь какое-нибудь отношение к таким понятиям, как красота, сила, вдохновение.
Я решительно протестую против этого косного представления о математике. Существует немало математических работ, которые при всей строгости и логичности остаются в глазах опытного и компетентного специалиста чисто формальными опусами, ничего не говорящими ни уму, ни сердцу. Но существуют и другие. Их авторы видят задачу математики в том, чтобы с помощью четких и точных методов создать новое, более совершенное представление о мире, высказать какое-то aperçus[34], которое еще немного приоткроет завесу таинственного. Если математики вынуждены при этом пользоваться определенными средствами, которые их в чем-то ограничивают, то разве не так обстоит дело при любой творческой работе? И разве это определяет существо дела? Знание контрапункта не лишает композитора восприимчивости к музыке, а необходимость считаться с правилами грамматики и писать сонеты, соблюдая определенную форму, не отнимает у поэта свободы творчества. Ибо полная свобода делать все, что ты хочешь и как ты хочешь, — это, в сущности, не более, чем свобода вообще ничего не делать.
Тем не менее творчество математика действительно не находит того отклика, который вызывают произведения скульптора или музыканта. Но связано это совсем не с большей или меньшей эмоциональностью аудитории, к которой они обращаются. Дело просто в том, что научиться хотя бы элементарно разбираться в математике гораздо сложнее, чем научиться получать некоторое удовольствие от музыки. А ведь мы не удивляемся тому, что композиторы, с интересом обсуждающие произведения друг друга, довольно равнодушны к их исполнению на концертах, где большинство слушателей пассивно воспринимает созданную ими музыку, не испытывая при этом ничего, кроме смутных эмоций.
Приняв во внимание все эти соображения, придется признать, что подчеркнутая отчужденность математиков связана не столько с их интеллектуально-эстетическим снобизмом, сколько с реальными трудностями контакта с непрофессионалами. В самом деле, для того чтобы составить хотя бы отдаленное представление о содержании той или иной математической работы и решить, нравится она ему или нет, любитель математики должен обладать достаточно высокой специальной подготовкой, без которой он просто лишен возможности воспринимать что бы то ни было, хотя бы даже и совершенно пассивно.
При всем этом математики вовсе не отгорожены от остального мира, как это может показаться на первый взгляд. Существует очень большой и постоянно растущий контингент людей — инженеров, физиков, даже биологов, — которые, используя математику в своих профессиональных целях, постепенно приобретают достаточное количество знаний, чтобы оценить по-настоящему глубокую теорию или умное, изящное доказательство. Одним из мотивов, побудивших меня взяться за написание автобиографии, было стремление привлечь внимание общества к существованию вот этого более узкого круга любителей математики; попутно мне еще, конечно, хотелось, чтобы и те, кто не имеет никакого отношения к «возне с цифрами», хотя бы на минуту представили себе, какая это увлекательная и волнующая профессия.
Итак, после Страсбурга я оставил банаховы пространства. При этом я исходил скорее из эстетических, чем из строго логических соображений. В то время эта проблематика с чисто математической точки зрения и с точки зрения возможных приложений не казалась мне настолько увлекательной, чтобы я захотел связать с ней свою будущность ученого. Сейчас я вижу, что в некоторых своих аспектах теория банаховых пространств приобрела достаточную глубину и обогатилась достаточно большим количеством интересных теорем, чтобы вполне удовлетворить мои запросы в этом отношении.
Однако тогда я думал, что в ближайшие десятилетия она может дать материал только для довольно абстрактных и не очень значительных работ. И виноват в этом был не Банах — я ни в коем случае не хотел бы, чтобы мои слова прозвучали как упрек в его адрес, — а множество гораздо менее талантливых исследователей, с жадностью набросившихся на его идею. То, что этой теорией в первую очередь должны заинтересоваться дельцы от науки, рыщущие в поисках не слишком сложных тем для докторских диссертаций, я предвидел с самого начала.
Но главной причиной, заставившей меня отказаться от дальнейшей работы по теории банаховых пространств, было все-таки то, что меня снова целиком захватили исследования броуновского движения. Дифференциальное пространство, или пространство броуновского движения, по существу, является некой разновидностью векторных пространств и очень тесно связано с банаховыми пространствами. Но, в отличие от них, оно имеет четкий физический смысл, что было для меня очень соблазнительной приманкой. К тому же в чисто математическом аспекте это была безраздельно моя область, в то время как в разработке теории банаховых пространств я мог рассчитывать лишь на положение младшего партнера.
Мне показалось, что, когда я впервые рассказал Фреше о дифференциальном пространстве, эта теория не произвела на него очень большого впечатления. Тем не менее Фреше помог мне встретиться с Полем Леви, работавшим тогда в Политехнической школе и считавшимся самым многообещающим среди тех молодых ученых Франции, которых занимала теория вероятностей. Леви не сразу поверил в то, что моя работа принципиально отличается от работы Гато, но в конце концов мне удалось его в этом убедить. С тех пор Леви стал одним из моих самых близких друзей и помощников, и начиная с этого времени во всех работах каждого из нас все время чувствовалось влияние другого.
Любопытно, что третьим математиком, работы которого впоследствии оказались очень тесно связанными с работами Леви и моими, был швед Крамер, с которым я впервые встретился в Англии, — в то лето он одновременно со мной гостил у Мусцио.