Я — математик. Дальнейшая жизнь вундеркинда — страница 14 из 83

В течение многих лет теоретическая электротехника переменных токов могла рассматриваться как уже законченная наука — в той ее части, которая касалась токов и напряжений фиксированной частоты, например совершающих 60 колебаний в секунду. В телефонии и вообще в электросвязи также приходится иметь дело с переменными токами, но здесь встречаются гораздо более сложные переменные токи, не имеющие фиксированной частоты колебаний, а испытывающие в каждый момент времени целый ряд различных колебаний. По телефонной линии одновременно распространяются токи с частотами порядка 20 колебаний в секунду и порядка 3 тысяч колебаний в секунду. Именно эта переменность и множественность частот позволяют использовать телефонную линию для передачи разнообразной информации любого сорта, от глубокого вздоха до тончайшего писка.

Здесь мы сталкиваемся с одним из самых древних разделов математики — с теорией колеблющейся струны; основы этой теории связаны с некоторыми идеями древнегреческого математика Пифагора. Пифагор и его ученики уже хорошо знали, что колебания струны создают звуки и что существует определенная связь между высотой созданного звука и длиной, плотностью и натяжением струны. Я не могу сказать, насколько отчетливо представляли себе древние греки, что струна может одновременно испытывать несколько разных типов колебаний. Во всяком случае, на заре современной науки, в XVII—XVIII веках, этот факт был уже хорошо известен.

Основным понятием, которое нам понадобится ниже, является понятие синусоиды. Для того чтобы представить себе, что это такое, предположим, что у нас есть вращающийся с постоянной скоростью барабан, на боковые стенки которого накручен лист бумаги, покрытый сажей. Предположим далее, что мы взяли камертон, прикрепили к его концу соломинку и заставили его колебаться параллельно оси нашего барабана. В таком случае, если поднести камертон к барабану, на покрытом сажей листе бумаги соломинка будет вычерчивать белую кривую; развернув лист, мы увидим правильную волнистую линию, которая и называется синусоидой.

Рассмотрим теперь более сложные кривые, получаемые при сложении нескольких синусоид. Вообще говоря, две кривые можно сложить, прибавляя друг к другу описываемые этими кривыми смещения, т. е., так сказать, комбинируя два камертона различной высоты тона так, чтобы оба они одновременно воздействовали на соломинку, прочерчивающую кривую на поверхности вращающегося барабана. В этом случае на одной и той же кривой будут одновременно наблюдаться два различных колебания; можно также добиться, чтобы этих колебаний было больше двух. Изучение способов разбиения различных кривых на сумму синусоид называется гармоническим анализом.

Существует очень важная теорема, которая гласит, что каждая кривая, форма которой снова и снова повторяется через один и тот же период, может быть представлена в виде суммы бесконечного числа отдельных синусоид с различными расстояниями между максимумами и минимумами. Фактически результаты такого рода были известны уже в XVIII столетии. Однако обычно с этой теоремой связывают имя Фурье — члена Французской академии наук, сопровождавшего Наполеона во время экспедиции в Египет.

С именем Фурье связан также другой способ сложения синусоид, при котором число этих синусоид столь велико, что уже невозможно выделить первую кривую, следующую за ней вторую кривую, следующую за ней третью и т. д. Иначе говоря, речь здесь идет о сложении громадного количества синусоид, частоты которых располагаются столь плотно, что их совершенно невозможно пронумеровать по порядку.

Две части гармонического анализа как раз и касаются, с одной стороны, анализа периодических процессов, представимых в виде того, что обычно называется рядом Фурье, и, с другой стороны, анализа процессов, возрастающих с течением времени от нуля до некоторой величины и в конце концов снова затухающих до нуля, для описания которых используются так называемые интегралы Фурье. В обоих случаях математикам приходится использовать изощренные методы суммирования определенных количеств, которые мы уже упоминали выше под названием лебегова интегрирования.

Удовлетворительное построение теории рядов и интегралов Фурье в 1920 году было еще новинкой и не успело просочиться в круги инженеров-электротехников. Исследование же процессов, наиболее интересующих этих инженеров, почти полностью лежало за пределами того, чем интересовались специалисты-математики. Ряды Фурье, занимающие в чистой математике очень большое место, могут быть полезны только при исследовании периодических процессов, точно повторяющихся бесконечное число раз через один и тот же промежуток времени. Обычная форма теории интегралов Фурье, усовершенствованная Планшерелем и другими математиками, касается кривых, принимающих очень малое значение в удаленном прошлом и снова становящихся очень малыми в удаленном будущем. Иначе говоря, обычная теория интегралов Фурье занимается процессами, которые в том или ином смысле имеют начало и конец, но не продолжаются неограниченно с примерно одинаковой интенсивностью. Длительные же процессы того типа, с которым мы встречаемся при рассмотрении непрерывного фона шумов или при изучении лучей света, почти полностью выпали из поля зрения профессионалов-математиков и интересовали лишь отдельных математически мыслящих физиков, вроде сэра Артура Шустера из Манчестера.

Таким образом, я начал понимать, что запросы профессора Джексона относительно строгого обоснования теории связи можно удовлетворить лишь на базе гармонического анализа, но что этого нельзя достигнуть, ограничиваясь гармоническим анализом, который существовал в то время. Инженеры-связисты справлялись с этим затруднением, используя формальное исчисление, разработанное примерно за 20 лет до того Оливером Хевисайдом[41]. Это формальное исчисление до сих пор еще не получило вполне окончательного строгого обоснования, удовлетворяющего всех математиков. Тем не менее в руках Хевисайда и тех из его последователей, которые усвоили дух его учения настолько хорошо, чтобы разумно его использовать, оно превосходно работало.

В течение нескольких лет основной задачей, которую ставила передо мной кафедра электротехники МТИ, было строгое логическое обоснование формального исчисления Хевисайда. Одновременно ряд ученых занимался этим же вопросом в других странах, но я не думаю, что полученные ими результаты были удовлетворительнее моих. Мой подход состоял в исследовании наиболее общей формы гармонического анализа, после чего оказалось, что работы Хевисайда без труда можно перевести на язык такого обобщенного гармонического анализа.

Любопытно отметить, что мои исследования по формальному исчислению в какой-то степени были связаны с моими ранними работами по теории броуновского движения. Дело в том, что до этого времени в математике не имелось удовлетворительных примеров процессов, описывающих движение того типа, который соответствует звуку или свету с непрерывным спектром, т. е. такому, энергия которого не сосредоточена в отдельных изолированных спектральных линиях, а непрерывно распределена по целому интервалу частот. Обычный гармонический анализ мог хорошо описать результаты исследования свечения паров натрия, но не результаты исследования солнечного света. (Свечение паров натрия сконцентрировано в отдельных ярких линиях, в то время как солнечный свет имеет непрерывное распределение цветов, т. е. частот.)

В главе 1 я уже рассказывал про свои исследования математики и физики дискретных процессов, в частности броуновского движения частицы в газе, возникающего в результате отдельных столкновений с молекулами, или, что то же самое, дробового эффекта электрического тока, связанного с тем, что ток представляет собой поток отдельных электронов. Мне удалось обнаружить, что с помощью процессов броуновского движения или дробового эффекта нетрудно построить процессы с непрерывным спектром; в частности, для этого достаточно подключить генератор тока, подверженного дробовому эффекту, к какому-либо колебательному контуру. Иными словами, я уже тогда начал вводить статистические соображения в теорию процессов с непрерывным спектром и через нее — в теорию связи. С тех пор прошло почти тридцать лет, и в настоящее время теория связи почти вся является статистической; истоки этого, если угодно, можно искать в моей работе того времени.

Занятия гармоническим анализом не исчерпывали всех моих математических интересов. Меня занимали и другие проблемы, одни в большей, другие в меньшей степени. Научно-исследовательская группа нашей кафедры накопила уже немало работ, заслуживающих опубликования; в результате у нас возникло желание издавать свой собственный журнал, и мы взялись за осуществление этого проекта[42]. Я был первым редактором журнала, но вскоре мои обязанности взял на себя Филлип Франклин, незадолго до этого перешедший к нам из Гарвардского университета; я работал вместе с ним на испытательном полигоне в Абердине, где он был моим другом и помощником.

Иногда я обсуждал, чем бы мне стоило заняться, с профессором О. Д. Келлогом из Гарвардского университета. Тогда я еще не знал, как ревниво приберегают многие профессора научные темы для своих аспирантов и как цепко держатся за свой приоритет в решении тех или иных задач. Я привык к более свободной обстановке в Англии и к расточительности отца, который щедро делился своими идеями с каждым, кто выражал желание его выслушать. Неуемно настойчивое любопытство, которое я проявлял, конечно, не располагало в мою пользу тех, чье доброе мнение могло бы оказаться мне очень полезным. Официально я не считался студентом Келлога. Он немало помогал мне, но я отнимал у него слишком много времени и думаю, что он считал меня страшно надоедливым субъектом.

От Келлога я узнал, что старая задача о распределении потенциалов снова стала привлекать всеобщее внимание. Здесь невозможно точно сформулировать эту задачу, но я постараюсь объяснить, о чем в ней идет речь. В физике часто приходится иметь дело с величинами, принимающими различные значения в различных точках плоскости или пространства. Одной из таких величин является температура в комнате. Существует также ряд других подобных величин, описывающих такие процессы, как движение жидкости или диффузия газа; сюда же относятся измеряемая вольтметром переменная электродвижущая сила между точками пространства и землей или между двумя точками проводника с током.