Я — математик. Дальнейшая жизнь вундеркинда — страница 15 из 83

Вряд ли стоит вдаваться в подробности относительно того, что называется электродвижущей силой; достаточно будет сказать, что это то, что мы измеряем в вольтах. Отметим также, что математическое изучение любых величин, изменяющихся в пространстве и во времени, относится к области дифференциальных уравнений в частных производных, представляющих собой математическое выражение связей, существующих между скоростью изменения нашей величины в различных пространственных направлениях и скоростью ее изменения во времени. То, что существуют величины, распределенные в пространстве и во времени одновременно, и что для них существуют скорости изменения в пространстве и во времени, было хорошо известно еще со времен Лейбница. Температура может меняться со скоростью стольких-то градусов в час, но она может также меняться со скоростью стольких-то градусов на 100 миль при перемещении к северу и стольких-то градусов на 100 миль при перемещении к востоку. В случае потоков воды, стекающих с холма, скорость изменения высоты непосредственно связана со скоростью потока: чем круче склон, тем быстрее течение.

Многие величины, распределенные в пространстве и во времени, очень важны для техники. Так, скорость убывания электродвижущей силы при удалении от линии передачи определяет, будет ли происходить передача по линии без существенных потерь или же эта линия в ночное время будет окружена сиянием в виде короны, уносящим много долларов из карманов компании, ведущей передачи, и ее клиентов. Для изучения теплоизоляционных свойств стен дома надо знать соотношения между потоком тепла и скоростью изменения температуры. Число примеров такого рода можно увеличивать почти безгранично.

Многие математические вопросы, связанные с исследованием подобных распределенных величин (которые мы будем называть потенциалами), разобраны до конца и не содержат никаких неясностей. Так, например, задача о распределении электродвижущей силы в части пространства, удаленной от стенок и от любых проводников, является сравнительно простой. Однако как только мы подходим к областям пространства, непосредственно примыкающим к поверхностям, имеющим некоторые специальные электрические свойства, мы немедленно сталкиваемся с затруднениями. Вблизи этих поверхностей, называемых границами, задача об определении электростатических потенциалов неимоверно усложняется. Аналогичные трудности возникают в теории теплопроводности и при изучении потоков жидкости.

Аномальное поведение потенциалов вблизи границы ярко проявляется, например, в поведении электростатического потенциала около заостренных концов проводника типа острия громоотвода. Если такое острие соприкасается со средой, содержащей электрические заряды, то непосредственно вблизи него скорость падения электродвижущей силы становится огромной или даже бесконечной. Электрическое поле при этом может не выдержать такой скорости изменения потенциала, или, как еще говорят, такого градиента потенциала. В результате воздух около острия перестает быть изолятором и, если поле достаточно велико, острие оказывается окруженным электрическим разрядом — короной, хорошо видимой в темноте. Многим морякам известно любопытное явление, называемое огнями святого Эльма, когда в насыщенной электричеством грозовой атмосфере гвозди и другие заостренные металлические предметы начинают светиться таинственными огоньками. Такая же электрическая корона возникает у острия громоотвода; именно благодаря этому громоотвод вызывает постепенное и незаметное ослабление градиентов потенциала в заряженной атмосфере и предохраняет от наращивания этих градиентов до степени, при которой они могут вызвать разрушительный электрический разряд.

Вообще, там, где электростатический потенциал очень быстро изменяется в пространстве, некоторые среды испытывают сильное напряжение и в конце концов могут быть пробиты электрическим зарядом, подобно тому как молния пробивает воздух и может пробить стекло в окне. Способность среды противостоять такому напряжению называется диэлектрическим сопротивлением.

До сих пор я рассматривал задачу о поведении электрического поля вблизи заостренных проводников с точки зрения физика, ставящего это поведение в зависимость от диэлектрического сопротивления среды, окружающей проводник. Существует, однако, родственная задача, имеющая более формальный чисто математический характер.

Мы здесь сталкиваемся с одной из тех ситуаций, когда между математической и физической задачами обнаруживается тесная связь, но сами эти задачи не соответствуют одна другой абсолютно точно. Все реально существующие острия, изучаемые физикой, такие, например, как острие обыкновенной швейной иглы, на конце все же чуточку закруглены. Теоретически, однако, можно представить себе гораздо более острое острие, получающееся, например, при вращении вокруг средней линии поперечного сечения опасной бритвы, лезвие которой является общей касательной двух ее вогнутых боковых сторон. Подобное острие невозможно абсолютно точно осуществить на практике, но в математике оно является вполне допустимым понятием. Можно рассмотреть также задачу о распределении электрического потенциала в пространстве, окружающем такое острие, и исследовать его поведение непосредственно около самого заострения.

Оказывается, что в некоторых случаях математическое поведение потенциала вокруг нашего идеального острия имеет много общего с наблюдаемым поведением потенциала около очень острых проводников. В соответствующей физической ситуации напряжение становится столь сильным, что наступает пробой среды вблизи острия. В математической ситуации этого не может быть, так как здесь нет среды, поддающейся пробою, но зато здесь может наступить разрыв самих значений поля. В случае такого нарушения непрерывности поля потенциал в самой точке острия становится неопределенным: его значения оказываются зависящими от того, по какому пути мы приближаемся к острию. Именно это явление я и начал изучать по предложению Келлога с целью выяснить, для каких заострений могут возникать такие нарушения непрерывности.

Некоторые относящиеся сюда результаты были уже раньше получены польским математиком Зарембой. Эти результаты позволяли сформулировать определенную гипотезу относительно степени остроты, достаточной для того, чтобы вызвать неопределенность потенциала, и другую гипотезу относительно степени тупости, гарантирующей отсутствие неопределенности у потенциала. Однако между степенью остроты и степенью тупости, фигурирующими в этих гипотезах, оставался пробел, так что существовали некоторые острия, относительно которых ничего не было известно. Профессор Келлог сам выполнил весьма важную работу по исследованию этих промежуточных случаев, и теперь два его молодых ученика писали в Принстоне докторские диссертации на эту тему. Я тоже начал думать о возможных методах решения этой задачи, как только Келлог сообщил мне о состоянии относящихся сюда исследований.

И тут обнаружилось, что я довольно быстро приближаюсь к цели, так что вскоре мне удалось сделать значительно больше, чем обоим соискателям докторской степени из Принстона. Но когда я показал полученные результаты профессору Келлогу, его отношение ко мне внезапно резко изменилось. Сначала ему было приятно, что я заинтересовался теорией потенциалов, но, увидев мою работу, он начал опасаться, как бы я не помешал двум его ученикам защитить докторские диссертации.

Во многих учебных заведениях и сейчас существует обычай не присуждать докторской степени за неопубликованные диссертации. В то время, о котором я сейчас рассказываю, это считалось общим правилом. Поэтому опасения Келлога имели определенные основания: он прекрасно понимал, что опубликовать работы, содержащие совершенно новые результаты, легче, чем работы, в которых что-то развивается и дополняется. Лично мне все эти соображения кажутся совершенно несерьезными, я считаю, что есть только один способ решить вопрос об оригинальности работы, поданной на соискание докторской степени: если в момент представления в ней содержатся какие-то новые сведения по сравнению с литературой, существующей в пределах досягаемости автора, ответ положительный, если нет — отрицательный. Словами «в пределах досягаемости» я хочу сказать, что считаю необходимым учитывать реальные возможности каждого автора.

Придерживаясь иной точки зрения и боясь, что я стану на пути двух его питомцев, профессор Келлог потребовал, чтобы я «забыл» о своих достижениях. Должен сказать, что я встретил его предложение без энтузиазма. Из-за болтливости Келлога — и только из-за его болтливости — я знал, что проблемой потенциала, кроме меня, занимается еще кто-то, но никаких сведений о том, как и что именно делают его подопечные, у меня не было, поэтому я не видел оснований считать свои результаты в какой-то степени несамостоятельными.

Все прочие рассуждения Келлога по поводу того, что как математик я вполне устроен, что работы эти мне ни к чему и что в данном случае более чем уместно проявить благородство, уступив честь их создания молодости и неопытности, то они просто не произвели на меня никакого впечатления. Кандидаты, о которых шла речь, были старше меня и, будучи учениками одного из влиятельных американских математиков, находились в гораздо более выгодном положении, чем я. В отличие от них, мне никогда не приходилось пользоваться милостями сильных мира сего, и профессора из Гарварда считали меня математиком, и притом вполне устроенным, только в тех случаях, когда хотели причинить мне какую-нибудь неприятность.

Если бы я не интересовался ничем, кроме научной деятельности, и занимался только устройством своей карьеры, создавшееся положение основательно отравило бы мою жизнь. Но ученый, кроме того, еще человек и, как всякий человек, имеет какие-то потребности, удовлетворение которых невозможно отложить до окончательного устройства всех дел. Я приближался к тридцати годам и был уже вполне готов вкусить радости семейной жизни. Как раз в это время мое внимание привлекла одна молодая особа, которая потом стала