Институт был для меня местом отдохновения от домашнего гнета. Несмотря на тяжелую нагрузку — больше двадцати часов в неделю, — я находил время не только на то, чтобы изучать работы других, но и творить самому. Целый день с девяти утра до пяти вечера я просиживал в институте, но даже при этих условиях — откуда только молодость берет силы! — у меня не было большей радости, чем провести воскресенье (суббота считалась рабочим днем) в пустой аудитории, зная, что здесь меня никто не потревожит. Сейчас пятая часть того, что я тогда делал, оказалась бы мне не под силу.
Что же касается моего досуга, то, кроме кино и посещения старого Копли-театра, я развлекался прогулками в Мидлсекские горы, бродил по Голубым Холмам, а иногда сам мастерил примитивные санки для катанья с гор позади кладбища Маунт Обен; были у меня и друзья: несколько молодых сотрудников на кафедре и кое-кто из аспирантов Гарвардского университета. Зимой я доставлял себе удовольствие пройтись до МТИ по льду или отправиться пешком по Спакс-стрит от дома до Бостона; весной и осенью я очень неважно и без особого увлечения играл в теннис.
К этому времени мой постоянно углублявшийся интерес к физическим аспектам математики начал приобретать некоторую определенность. Здания МТИ, построенные на берегу Ривер-Чарльз, располагались так, что прямо из окон открывался широкий вид на живописные окрестности. Особенную радость доставляла река. За причудливыми капризами воды, казалось, можно следить с утра до вечера. Но для меня, математика и физика, в этой красоте была совсем особенная привлекательность. Как установить математические закономерности, которые управляют движением всей этой массы беспорядочно бурлящей воды? Ведь высшее назначение математики как раз и состоит в том, чтобы находить скрытый порядок в хаосе, который нас окружает. Ривер-Чарльз иногда внезапно покрывалась высокими валами с белыми гребнями пены, иногда чуть морщилась еле заметной рябью; длина ее волн то не превышала двух-трех дюймов, то достигала нескольких ярдов[17]. Как дать математическое описание всех этих бросающихся в глаза явлений? Каким аппаратом воспользоваться, чтобы не утонуть в бесконечном разнообразии мелких подробностей этой картины? Было ясно, что эта задача как-то связана с проблемой статистического осреднения, родственной понятию интеграла Лебега, изучением которого я в это время как раз занимался. Так у меня впервые появилась мысль, что абстрактные математические теории, которые я изучал, имеют непосредственное отношение к описанию природы. Отсюда было уже недалеко до убеждения, что природа, в широком смысле этого слова, может и должна служить не только источником задач, решаемых в моих исследованиях, но и подсказывать аппарат, пригодный для их решения.
Одному из своих старших товарищей по кафедре, Хенри Бэйярду Филлипсу, я особенно признателен за то, что он помог мне оценить значение физики для математики. Этот высокий, худощавый уроженец Каролины[18], лишенный каких бы то ни было признаков возраста, вырос в то тяжелое время, когда никто еще не успел забыть гражданскую войну[19]. Он до сих пор продолжает заниматься наукой и, не изменив своих принципов, по-прежнему убежден, что сделать новую работу гораздо интереснее, чем ее опубликовать. Ему больше, чем кому бы то ни было другому, я обязан тем, что понял, как важно математику иметь физическую интуицию. Кроме того, Филлипс познакомил меня с замечательными работами Уилларда Гиббса по статистической механике, и это знакомство оказалось значительной вехой на моем жизненном пути. Уиллард Гиббс, один из величайших американских ученых, фактически создал новую научную дисциплину, лежащую в промежуточной области между физикой и математикой. Вся его бедная событиями жизнь протекала в стенах Йельского университета, где он и умер в 1903 году, не добившись известности даже среди студентов и своих коллег. Гиббс сделал много интересного и в физике и в математике, но меня прежде всего интересовали его основные работы, относящиеся к статистической механике. Именно эти работы во многом определили мой собственный путь ученого.
Дело в том, что традиционный взгляд на физику, идущий от великого Ньютона, неразрывно связан с детерминистскими представлениями, согласно которым точное знание состояния всей вселенной или любой ее замкнутой части в какой-либо один момент времени уже содержит в себе точное знание всей ее последующей истории. В соответствии с основным предположением Ньютона, зная положения и скорости частиц в волне на поверхности Ривер-Чарльз, можно рассчитать движение этой волны во все последующие века. К сожалению, обладая измерительными приборами, сделанными всего лишь руками человека, невозможно получить абсолютно точные значения положений и скоростей всех частиц в начальный момент времени. Поэтому физик, реально подходящий к явлениям природы, неизбежно сталкивается с вопросом: а что же на самом деле можно утверждать, опираясь на те приближенные данные о начальном состоянии, которые он может получить с помощью существующих приборов?
При решении этого вопроса ученый вынужден рассматривать вместо одной-единственной вселенной множество различающихся между собой миров, причем каждый из них имеет лишь некоторую определенную вероятность совпасть с тем, в котором он живет. Он не в состоянии с уверенностью сказать, что же будет происходить отныне и вовеки, а может только объяснить, что, по всей вероятности, произойдет в какое-либо определенное время, при каких-то определенных условиях. Новая область науки, опирающаяся на понятие вероятности, складывалась в течение значительного промежутка времени, но только работы Гиббса, в которых математически четко были сформулированы основные идеи статистической физики, внесли в это направление полную ясность.
Идеи Гиббса не случайно произвели на меня такое сильное впечатление. Как раз перед моим первым учебным семестром в МТИ д-р И. Барнетт из Цинциннати[20] перешел на работу в Кембридж, и мы с ним оживленно обсуждали различные математические и нематематические вопросы. Мне предстояло впервые вести самостоятельную научную работу, и я как-то не знал, на чем сосредоточить свои усилия. Я попросил Барнетта указать мне какую-нибудь симпатичную задачу, над которой еще никто не работал. Он сказал, что имеется огромное поле деятельности, связанное с обобщением понятия вероятности на ситуации, где «возможные состояния» не могут быть представлены точками некоторой плоскости или области пространства, а имеют характер кривых, описываемых какими-нибудь движущимися объектами.
Примером задачи, в которой «возможные состояния» естественно представляются точками, является задача о распределении попаданий в мишень в случае, когда по мишени делается несколько выстрелов и нужно заранее указать вероятную кучность пулевых отверстий. С другой стороны, в задаче о разлетающихся из улья пчелах или, еще лучше, о походке пьяного человека, направление каждого последующего шага которого никак не связано с предыдущим, приходится говорить о вероятностях различных путей. Предположим, например, что наш пьяница находится в центре квадратного поля заданных размеров; как в таком случае рассчитать, сколько в среднем понадобится ему времени, чтобы выбраться с этого поля?
Эта задача о вероятностном расчете процессов, содержащих беспорядочные колебания, имеет определенное историческое значение. Начало XX века сопровождалось существенными изменениями в математике, отражающими новые, более сложные представления о внешнем мире. В XIX столетии основной интерес математики сосредоточивался на изучении точечных объектов и величин, зависящих от переменных, значения которых также являются точками. Новые концепции, возникшие в начале нашего века, ставили своей целью заменить точки траекториями точек, т. е. кривыми.
Любопытно, что корни этого нового подхода к математике можно найти еще в XIX и даже в XVIII столетиях — я имею сейчас в виду те разделы математики, которые касались так называемого вариационного исчисления. В первоначальном дифференциальном исчислении Ньютона и Лейбница рассматривались задачи на максимум и минимум, в которых искомый максимум или минимум имел характер вершины холма или дна чаши (немного более сложный, но родственный характер имеет также перевал в горном хребте). Что же касается вариационного исчисления, то здесь рассматриваются значительно более сложные задачи, типа задачи нахождения самого быстрого пути от одной точки до другой в области, в которой возможная скорость передвижения меняется от точки к точке. Иными словами, в этом случае также решаются задачи на максимум или минимум, но ответом является уже не точка, а кривая.
Таким образом, истоки «математики максимумов и минимумов для кривых» относятся к весьма удаленному от нас периоду, однако полное развитие эта математика получила совсем недавно. Мир кривых гораздо разнообразнее и богаче мира точек, но только математики XX столетия сумели овладеть его богатством.
Под влиянием бесед с Барнеттом весь первый год пребывания в Массачусетском технологическом институте я потратил на поиски возможностей распространения понятия интеграла Лебега на случаи более сложные, чем те, которыми занимался сам Лебег. На эту тему уже имелась одна работа. Ее сделал молодой француз Гато, погибший на войне. К сожалению, он не охватил всего вопроса в целом, и, когда я попробовал продолжить его исследования, у меня создалось впечатление, что они ведут меня в неверном направлении.
Английский ученый П. Дж. Даниель, преподававший тогда в Институте Райс в Хьюстоне (Техас), тоже написал несколько статей, имевших отношение к интересующей меня задаче. Его работы понравились мне гораздо больше, чем статья Гато, и я решил взять их за основу. Однако Даниель не рассматривал специально семейства кривых, и моя попытка применить его методы к этим новым объектам сперва показалась мне самому надуманной и малоинтересной.