Я познаю мир. Авиация и воздухоплавание — страница 24 из 28



Гонки «вокруг шарика»

Полетим вокруг света?

Идея сверхдальних беспосадочных перелетов родилась в 30-е годы. Как мы уже говорили, экипажи М.М, Громова и других советских пилотов летали из Москвы на Дальний Восток, через Северный полюс в Америку... А наш знаменитый летчик В.П. Чкалов мечтал даже «махнуть вокруг шарика». И оказывается, это были не просто мечты. Пилоты М.М. Громов и Г.Ф. Байдуков, конструкторы

А.Н. Туполев, А.Д. Чаромский, А.С. Москалев и другие стали участниками одного из самых смелых для того времени проектов. Не многим теперь известно, что в 1936—1941 годах при их деятельном участии был подготовлен сверхдальний полет самолета АНТ-25 по 56-й параллели (широта Москвы) протяженностью 22 500 км. Но осуществить планы помешала война.

На АНТ-25 должны были установить 2000-сильный дизель АН-1, разработанный в Центральном институте авиационного моторостроения и ставший затем базовым для модификации АЧ-ЗО, АЧ-ЗОБФ и АЧ-31. По экономичности он не имел равных: удельный расход топлива был вдвое ниже, чем у тогдашних, да и у нынешних бензиновых карбюраторных двигателей — 0,140—0,145 кг/л. с. час против 0,24—0,28 кг/л. с. час. А поскольку дизельное топливо дешевле бензина, выигрыш был еще большим.

Правда, советские дизели довоенной поры были недостаточно надежны. Но потом их усовершенствовали, и, установленные на бомбардировщиках Петлякова, Бартини—Ермолаева, Туполева, они хорошо зарекомендовали себя в Великую Отечественную. После победы дизели появились и на пассажирских самолетах Ил-12.



Рекордный самолет «Вояджер»

В тот период самолетостроители сосредоточились на разработке реактивной техники. С военной точки зрения это было оправданно. Но зачем гражданской авиации сверхзвуковые скорости? Если истребители-перехватчики выжимают 6 тыс. км/ч, то для «Аэрофлота» и 3 тыс. км/ч более чем достаточно. Сверхзвуковыми самолетами ныне летает менее 1 % авиапассажиров, да и в следующем столетии, по прогнозам, эта цифра вряд ли возрастет до 3—4 %. Для гражданской авиации оптимальны скорости 600—850 км/ч. И здесь наиболее выгодны турбовинтовые, турбовентиляторные и... дизельные двигатели.

«Чтобы оценить эффективность сочетания авиадизеля с новейшими достижениями самолетостроения, в Московском авиационном институте спроектировали на уровне технического предложения экспериментальный самолет для дальних беспосадочных полетов без дозаправки, — рассказывал старший научный сотрудник МАИ Е. И. Голубков. — С авиадизелем Д-11, управляемым двумя посменно работающими пилотами, самолет способен менее чем за 12 суток облететь земной шар по экватору. Ни один из применяемых ныне авиационных двигателей такой возможности не дает...»


Экспериментальный самолет МАЛ 405

Однако нас опередили. В 1986 году американский пилот Дик Рутан в компании с Джиной Йигер совершил первый кругосветный полет без посадки и дозаправки в воздухе на самолете «Вояджер», сконструированном его братом Бартом.

Впрочем, история на том вовсе не закончилась. Недавно в Москве состоялась научная сессия, посвященная 90-летию полета братьев Райт. Одна из секций обсуждала вопросы кругосветных полетов.

Известные специалисты В.А. Белоконь и B.C. Егер из Авиационно-космического центра МГУ выступили с идеей проведения воздушных беспосадочных гонок вокруг земного шара, вспомнив, что некогда весьма популярные авиагонки немало способствовали совершенствованию самолетов. Благо проекты уже имеются.



Проект В.А. Белоконя

 Кроме упомянутой: разработки МАИ в нашей стране проведены предварительные изыскания еще по двум конструкциям — В. А. Белоконя и Экспериментально-опытного механического завода имсени В. М. Мясищева. (ЭМЗ).



Проект самолета КЗ им. В.М. Мясищева

«Несколько лет назад нам предложили создать машину получше рутановской, — рассказал инженер-конструктор ЭМЗ имени Мясищева Е. Г. Комелев- — Дик и Джина ведь летели на пределе возможностей, в конструкции «Вояджера» практически не было предусмотрено запасов. Наш же самолет должен сделать такие полеты не подвигом, а повседневностью».

Действительно, в кабине «Вояджера» не было кислородных приборов, хотя, обходя грозу над Африкой, само.лет вынужден был подниматься выше Эвереста, а когда приземлился, в его баках оставалось всего 20 кг топлива. По проекту ЭМЗ самолет должен быть двухбалочной схемы (она уже опробована при создании высотных разведчиков М-17 и М-55) и иметь следующие характеристики: размах крыла — 31,88 м; Длина фюзеляжа— 9,5 м; масса — 5300 кг, причем около 4 тыс. кг из них приходится на топливо.

Будет ли он лучше рутановского? Ответить непросто. Наши конструкторы не имеют достаточного опыта применения новейших материалов. С ними работают, как с обычными изотропными, имеющими равную прочность в любом направлении. А ведь это далеко не так. Не потому ли в проекте ЭМЗ крыло самолета хоть и короче, чем у Рутана, а вес его больше? Правда, кабина у нашего лайнера попросторнее, предполагается установить кислородное оборудование. Сможет ли такой самолет одолеть без посадки намеченный маршрут Москва — Одесса — Босфор — Гибралтар — Панама — Индонезия — Красное море — Иран — Каспийское море — Москва общей протяженностью 40 500 км за 7 суток, покажет время.

Полет в лучах солнца

Не успокоились, впрочем, и зарубежные конструкторы. Некоторые из них решили отказаться от двигателя внутреннего сгорания, отдав предпочтение электрическим моторам. Тем более что, согласно современным проработкам, теперь можно обойтись и без тяжелых аккумуляторных батарей. Электричество будут вырабатывать пленочные фотоэлементы, которыми обклеивают верхнюю поверхность крыла вместо обшивки. Один из таких проектов ныне всерьез рассматривается американцами. Как пишет журнал «Popular Science», на базе Эдвардс, штат Калифорния, проходит испытания 8-моторный экспериментальный самолет, могущий в принципе облететь земной шар за 20 суток.



Экспериментальный самолет, использующий энергию Солнца

Конструкция выполнена из современных композитных материалов, и самолет весит всего около 100 кг, несмотря на то что имеет размах крыла больше, чем у «Боинга-737» (порядка 70 м). Пилоты могут размещаться каждый в своей отдельной кабине-пилоне, расположенной под крылом. Впрочем, их помощь в управлении машиной нужна лишь во время испытательных полетов. «Кругосветку» она способна совершить и в автоматическом режиме, управляемая дистанционно, с помощью самолетов сопровождения или спутников связи и навигации.

Таким образом, американские инженеры продолжают линию, начатую ими еще в 1980 году, когда в небо впервые поднялся солнечный аэроплан «Gossamer Penguin». Год спустя 15-метровый «Solar Challenger» перелетел через Ла-Манш. А ныне неугомонный американский конструктор Поль Мак-Криди, создавший уже несколько подобных аппаратов, похоже, решил оставить под крылом сразу весь Мировой океан.

Поскольку из-за малой скорости (порядка 145 км/ч) самолет не поспеет за движущимся Солнцем, в ночное время питание электромотора будет поддерживаться за счет топливных элементов, работающих на гидразине и кислороде. Поэтому, говоря строго, такой летательный аппарат имеет ограниченный ресурс полета — не более 2—3 тыс. часов. Но и этого, согласитесь, за глаза хватит для выполнения многих задач. Тем более, что в принципе ресурс может быть существенно повышен благодаря передаче энергии на борт самолета, допустим, по СВЧ-лучу.

Самолет движут микроволны

Несколько лет тому назад многие издания сообщили о том, что на полигоне исследовательского центра министерства связи Канады 6 октября 1987 года состоялся первый полет опытного варианта беспилотного самолета «SHARP» (Stationary High-Altitude Relay Platform), представляющего собой стационарную высотную платформу-ретранслятор с двигателем на сверхвысокочастотной (СВЧ) энергии.



Схема полета самолета, использующего СВЧ-энергию

Для тех, кто не читал упомянутых публикаций, коротко доложу суть дела. Самолет бы выполнен в масштабе 1/8 натуральной величины, имел крыло с размахом 4 м. На взлете и посадке питание электродвигателя с воздушным винтом осуществлялось за счет энергии бортовых никель-кадмиевых батарей. После взлета и подъема на высоту 90 м батареи отключались, и в дальнейшем полет осуществлялся за счет передачи на борт аппарата СВЧ-энергии с помощью наземного передатчика с параболической антенной. На борту самолета находилась специальная приемная антенна, которая обеспечивала преобразование принимаемого СВЧ-излучения сначала в постоянный, а затем и в переменный ток, необходимый для питания электродвигателя.



Далее сообщалось, что в перспективе предлагается создать усовершенствованный вариант самолета больших габаритов и испытать его уже на высотах 2,5—3 км. Однако такой самолет до сих пор не появился. Почему?

Оказалось, что затраты на его создание оказались существенно выше, чем предполагалось вначале. Ведь в окончательном варианте, по мнению разработчиков, самолет должен иметь размах крыла 36,6 м, длину фюзеляжа 23,8 м, диаметр диска с антеннами-выпрямителями 9,1 м и массу полезной нагрузки около 90 кг.

Чтобы обеспечить эффективный прием передаваемой энергии, на борту самолета предполагается установить около 10 тыс. антенн-выпрямителей. Они будут располагаться под консолями крыла и фюзеляжа, а также непосредственно на диске. Управление аппаратом обеспечит бортовой компьютер.



Схема передачи СВЧ-энергии из космоса

Чтобы передаваемой на борт самолета СВЧ-энергии хватило для поддержания полета, необходимо, чтобы ширина сфокусированного луча не превышала 30 м, давала мощность на ходе бортового электродвигателя не менее 30 кВт, а стало быть, плотность энергии на нижней части самолета должна составлять порядка 500 Вт/кв. м при полете на высоте до 21 км.



С этой целью выбрана частота передаваемого излучения 2,45 ГГц; при этом меньше потери энергетического пучка в воздушной среде. А чтобы передаваемый луч достиг приемной антенны, не распыляясь в пространстве более чем на 30 м в окружности, диаметр передающей антенны должен быть не менее 70 м.

Чтобы выбрать оптимальный вариант, разработчики предполагали рассмотреть несколько конструкций передающего оборудования — как в виде одной большой антенны, так и антенной системы. Одно из предложений предусматривает также использование системы из 260 параболических антенн с диаметром отражателя 4,6 м с механическими и электронными средствами управления пучком энергии.

В общем, трудностей оказалось предостаточно. Тем не менее разработчики полагают, что коммерческий самолет такого типа будет создан в начале следующего столетия.

Согласно расчетам, он должен выполнять барражирующие полеты по кругу диаметром 4,5 км на высоте 21 км при скорости 220 км/ч, охватывая площадь диаметром около 600 км. Продолжительность такого полета составит от 6 месяцев до 2 лет, а сам аппарат предполагается использовать как летающую антенну для ретрансляции программ регионального радиовещания, ведения прямых телепередач и обеспечения телефонной связи с подвижными транспортными средствами, наблюдения за океанской акваторией и для дальнего радиолокационного обнаружения низколетящих целей, ведения круглосуточного наблюдения за границами и т.д.

«Бензоколонка» на орбите

Снабжение энергией летательных аппаратов, кстати, может осуществляться не только с поверхности Земли, но и из космоса. Так, во всяком случае, полагают директор Исследовательского центра имени М.В. Келдыша (бывший Институт тепловых процессов), академик А.С. Коротеев и его сотрудники В.Н. Акимов, Ю.М. Еськов и В.Ф. Семенов. Суть же дела они пояснили следующим образом.

Ныне очень модно говорить о возобновляемых источниках энергии. Однако энергия ГЭС, как выяснилось, обходится нам отнюдь не столь дешево, как считали еще недавно. Ветры дуют в определенных, не столь уж многочисленных регионах страны. Для солнечных же электростанций, учитывая северное расположение основных территорий России, характерна низкая плотность энергии (в среднем за год не более 100 Вт/кв. м) и большая неравномерность, вплоть до полного отсутствия солнечного света зимою в Заполярье.

Поэтому если уж использовать даровую энергию нашего светила, то станции надо строить на околоземной орбите, где солнце светит круглые сутки и круглогодично, причем плотность энергии почти в 15 раз выше, чем не поверхности планеты.

Сама по себе идея создания орбитальных электростанций — не бог весть какая новость; она муссируется в специальной и научно-популярной литературе добрых лет тридцать. Во всяком случае, первую работу на эту тему наш соотечественник П.А. Варваров опубликовал еще в 1960 году, а его коллега П.Е. Глейзер из США — в 1968 году. Отметим вкратце основные преимущества и недостатки подобного способа получения энергии.

Несомненным достоинством идеи, как уже говорилось, является наличие такого «бесплатного» источника, как наше светило. Однако, чтобы преобразовать солнечный свет в электричество, а потом переправить электроэнергию на поверхность планеты, человечество должно затратить определенные усилия. Необходимо доставить на орбиту и развернуть там огромные конструкции солнечных элементов — как говорят предварительные расчеты, речь здесь идет о площадях 100 х 100 км и более. Ныне существующие преобразователи солнечной энергии имеют довольно низкий КПД, но солидную массу. Так, ныне в основном используются батареи, имеющие отношение массы к вырабатываемой энергии порядка 100 кг/кВт, когда хотелось бы иметь соотношение хотя бы на два порядка поменьше. Подобные конструкции на основе аморфного кремния, могущие дать в перспективе порядка 1 кг/кВт, разрабатываются в США и Японии, но исследования пока не вышли за стены лабораторий.

Тем не менее наши специалисты, по словам академика А.С. Коротеева, рассмотрели несколько вариантов передачи энергии на Землю из космоса. На сегодняшний день наиболее реальны два способа: передача энергии по лазерному или СВЧ-лучу. Японские исследователи отдают предпочтение первому, наши — второму. И вот почему. КПД лазерных систем в лучшем случае составляет 15—20%, СВЧ-систем — до 90%. Кроме того, производство лазеров технологически значительно сложнее, а с точки зрения экологии они ничуть не безопаснее.

Конечно, СВЧ-луч будет определенным образом воздействовать на атмосферу, проделывая в ней ионизированные каналы. Причем ионизацию можно будет использовать в полезных целях, например для выжигания фреона в ионосфере Земли с целью уменьшения парникового эффекта. Что же касается воздействия излучения на нижние слои атмосферы и непосредственно на поверхность планеты, то проектировщики надеются свести вред от него к минимуму. Надежды их покоятся вот на каком основании.

Во-первых, само по себе СВЧ-излучение не более вредно для экологии, чем нынешние запуски ракет-носителей: ведь при их запусках, как известно, тоже образуются ионизированные каналы, которые держатся в атмосфере несколько часов, а то и суток. Во-вторых, подобные каналы будут меньшего диаметра и точно нацелены на приемные антенны; интенсивность же излучения за пределами канала сразу же резко уменьшается в тысячи и более раз. Так что суммарный вред от применения такой энергетической системы будет куда меньший, чем, скажем, от нынешних тепловых электростанций.

Проекты XXI века