Хорошо бы, выехав как-нибудь за город, достать из рюкзака и распаковать некий аппарат с крыльями. Затем надеть лямки подвесной системы, напрячь мускулы и... взмыть в небо. Да, неплохо бы иметь портативный му скул о лет, который позволял бы взлетать с места и садиться на пятачок, пролетев дистанцию порядка 1 км на высоте 4—7 м. Что же мешает осуществлению желания? Да и существует ли принципиальная возможность создания такого аппарата?
Испытания «золотого орла»
Ныне есть два типа мускулолетов: орнитоптеры с машущим крылом, подобные птицам, и схожие с планерами — с неподвижными крыльями, которые тянет пропеллер, вращаемый ногами пилота.
Правда, еще ни один орнитоптер, скажем сразу, не поднялся в воздух выше чем на 2—3 м, не пролетел и километра. В сравнении с ним планерный мускулолет имеет неоспоримые преимущества. Апогеем стал перелет на нем с острова Крит до материковой Греции. Согласно древнегреческому мифу, то же некогда сделал Дедал, отец знаменитого Икара, поэтому и мускулолет назвали «Дедалом». Расстояние в 96 км он прошел со скоростью примерно 20 км/ч на высоте от 2 до 7 м.
Такие характеристики — дальность, высота, да и вес (75 кг) — вполне устраивают. Но... «Дедал» не запихнешь в багажник автомобиля, не провезешь в электричке — он неразборный. Да и размах крыльев такой, что на дачных шести сотках мускулолет разместится только по диагонали. Чтобы взлететь, ему необходимо шоссе. А стоимость... Она пока сравнима с ценой подержанного «боинга».
«Стало быть, остается уповать на махолеты-орнитоптеры», — полагает изобретатель из Подмосковья Денис Воронин. Они, в свою очередь, делятся на два подвида. Одни обладают кабиной, шасси, относительно сложной системой управления и напоминают самолет. Другие обходятся без колес — наподобие ранца крепятся прямо к пилоту. Такие мускулоле-ты довольно редки — видимо, сказывается привычка конструкторов к проверенной самолетно-планерной схеме.
Орнитоптеры с кабиной и шасси хороши тем, что освобождают ноги пилота-двигателя для работы педалями. Но вращение «звездочки» нужно как-то передать крыльям. Эта задача решается дорогой ценой — с помощью механизма, который преобразует вращение в возвратно-поступательное движение. Причем на трение расходуется до половины всей энергии живого «двигателя». К тому же мускульное усилие, за исключением непродолжительного времени, когда ступицы педалей, связывающих их с осью «звездочки», перпендикулярны ногам, тратится на то, чтобы просто сдавливать или растягивать сталь, из которой они сделаны. Полезной работы при этом не производится.
Ранцевые орнитоптеры привлекают возможностью транспортировки и малым весом. Однако у них свои минусы — ноги с их мощными мускулами оказываются не задействованы. Любопытную подсказку дает искусница природа. К полету, как известно, способны не только птицы, комары, бабочки, но и такие млекопитающие, как летучие мыши. А в мезозойскую эру летали архозавры, птеродактили, археоптериксы. На спине у них, по свидетельству исследователей, могли бы уместиться несколько слонов. Стало быть, появляется робкая надежда — уж если такие гиганты поднимались в воздух, то тем более это должно быть доступно человеку: ведь в расчете на единицу мышечной массы он куда сильнее того же архозавра. В чем же состоит секрет летающих гигантов?
Если всмотреться в рисунки-реконструкции, полистать зоологическую литературу, станет ясно, что их крылья, как, кстати, и крылья летучих мышей, имеют особое строение. Все четыре конечности связаны между собой соединительной тканью — перепонкой — и почти на равных участвуют в передвижении крыльев. Таким образом, каждый мускул тут в действии. Вот и в ранцевом орнитоптере следует включить в работу ноги.
«Итогом моих размышлений, — продолжает свой рассказ Денис, — а также труда в мастерской стал такой летательный аппарат, насколько мне известно, первый и единственный, в котором для махов крыльями используются практически все мускулы пилота. Вот что представляет собой эта «птичка». Ее крылья имеют площадь в полностью раскрытом виде 7,2 кв. м, а при отогнутой кромке — 4,8 кв.м; при размахе расстояние между крайними точками составляет 7,5 м. Материал остова — дюралевые трубы.
Ранец, который я назвал «доспехами» и которым крылья прикрепляются к пилоту, — своеобразный фюзеляж. Он плотно и удобно облегает торс, талию и плечи летчика. Рама «доспехов» выполнена из дюралюминия, а особенно ответственные узлы — из нержавеющей стали.
Ножной привод крыльев выглядит как площадка с креплениями для ступней; от нее идут шнуры к несущей основе крыльев — ни дать ни взять когти. Весит «Золотой орел» около 20 кг. Но я думаю, если поменять дюраль на легкие композиты, то снизить массу можно как минимум вдвое. Когда пилот стоит, полностью выпрямившись, шнуры «когтей» подтягивают оба крыла вниз, почти до касания с землей. Сгибая ноги в коленях, чуть присев, летчик дает слабину шнурам, и крылья поднимаются вверх. Этому помогают и резиновые жгуты, одним концом закрепленные на мачте, отходящей от фюзеляжа. В работу включены и руки, для чего в основании крыльев предусмотрены специальные ручки, являющиеся одновременно и органами управления. Одно из крыльев можно придерживать, немного наклонять, разворачивая таким образом аппарат в нужную сторону.
Зная, что недостатки конструкции всплывают только на испытаниях, решил испытать ее в школьном спортзале. Вот одеты «доспехи» с заранее подсоединенными крыльями. «Когти» пока лежат в стороне. Руками двигать крылья удобно, легко, даже слишком. Значит, их площадь можно и нужно увеличить как минимум в полтора раза. Правое крыло под сильную руку я сделал несколько больше левого. Может быть, это хитрость и излишняя. Вертикальная тяга составляет 9—12 кг, или около 100 Н. Это составляет примерно 1/7 полетного веса. Горизонтальная составляющая толкает в спину и куда-то вбок.
Пробую ножной привод. После пристегивания «когтей» сразу же теряется устойчивость «Орла». Да, надо было бы отвести от фюзеляжа хвостовое оперение-стабилизатор. А пока — первое падение. Потеряв равновесие, опрокидываюсь навзничь. Наверное, такое чувство испытывал рыцарь в тяжелых доспехах, которого на всем скаку сдергивали с коня...
Мне помогают освободиться от «Золотого орла». Встаю, чешу затылок... Что мы имеем в итоге? Драгоценный опыт. Теперь ясно: схема перспективна, но нуждается в определенной доработке. Кое-что надо изменить, что-то добавить».
Человек-стрекоза
В 1987 году на авиационном празднике в Москве Владимир Топоров демонстрировал «Истину» — полноразмерный махолет с мотоциклетным двигателем. Машина разгонялась по бетонке Тушинского аэродрома, задирала нос... но так и не взлетела. Конструктор обещал исправить ее недостатки и в следующий раз полететь по-стрекозиному.
Через два года Владимир привез в Ригу на очередной слет солидную модель махолета. Семикилограммовая стрекоза с игрушечным моторчиком взлетала с рук, поднималась на 50-метровую высоту и порхала до тех пор, пока был бензин. Она по всем параметрам превосходила модели, о которых шумела западная пресса. Зарегистрирован почти пятиминутный полет махолета.
И наконец, в 1993 году Топорову все-таки удалось взлететь самому. Вот как это было...
Воткинск, где живет Владимир Топоров, — небольшой зеленый городок с сапфировым озером посередине. Это родина Петра Ильича Чайковского. Здесь, казалось бы, не махолеты придумывать, а сочинять музыку да стихи.
Впрочем, теперь уже все знают, что именно здесь расположен завод, выпускающий самые совершенные ракетные комплексы средней дальности — предмет черной зависти западных инженеров. Клуб «Алые паруса», которым руководит Топоров, до недавних пор действовал при этом заводе. Да и сам Владимир работал на нем конструктором и расчетчиком.
На лето клуб переехал за город. На опушке берендеевского леса Топоров и 12 его юных помощников разбили лагерь, построили ангар.
Жили, сочетая приятное с полезным, но главным занятием оставался махолет. Прогоны по тихому шоссе, ставшему взлетно-посадочной полосой, доработки, снова прогоны...
Потом в тихое солнечное утро машину вывели из ангара, донесли до шоссе, покатили на соседнее поле. Пилотировал махолет сам конструктор, а разгоняли всей командой с помощью лебедки. Взявшись за пропущенный через нее трос, ребята помчались по полю. Пилот пустил в ход крылья. Скорость возросла, и после короткого разбега машина взмыла в воздух. Топоров начал яростно махать крыльями, и гигантская стрекоза какое-то время набирала высоту. Она летела сто, двести метров, но силы пилота небеспредельны. Махолет снизился и плавно сел на край поля. Конечно, победа, но Топоров не очень доволен. Подлеты, считает он, только начало.
«Я чувствую, что махолет можно поднимать с земли без буксировки, и даже знаю направление поиска. Надо работать еще...»
Потомки Дедала
Впрочем, не надо думать, что Топоров и его команда — единственные в своем роде. Работы над орнитоптерами и махолетами ведут и другие конструкторы.
Началось все еще со времен Леонардо да Винчи, в архивах которого обнаружены довольно подробные чертежи орнитоптера — летательного аппарата с машущими крыльями, С тех пор, если не раньше, человеческая мысль бьется над решением этой технической задачи. Модели птиц-парителей строили и изучали пионеры авиации А.Ф. Можайский, О. Лилиенталь, Н.Е. Жуковский. Еще в прошлом веке лейтенант В. Спицын замерял подъемную силу построенной им машущей модели с пружинным приводом. В 1908 году русский летчик А. Лиуков испытывал в Тифлисе мускулолет своей конструкции с ножным приводом, а спустя 25 лет совместно с В. Андреевым построил моторный орнитоптер АШ-1. Но машущее крыло не помогло поднять машину в воздух. Поэтому на несколько десятилетий в этой области авиации наступило затишье. Но с середины 50-х годов у махолетчиков начался новый бум. Инженер А. Монацков подрессорил крылья планера А-9. И в итоге аппарат, названный «Кашук», летал в Тушине на параде, качая крыльями с амплитудой 4 м.
Стали строить орнитоптеры и в Германии, Франции, но более всего — в США. Инженер-исследователь Мемориального института в городе Колумбусе, штат Огайо, Т. Харрис и преподаватель авиакосмического машиностроения Принстонского университета Д. Деларье создали двухметровую радиоуправляемую модель, но каких-либо выдающихся результатов не добились. Потом они попробовали построить пилотируемый аппарат с размахом крыла 18 м, однако проект так и не был реализован.
В конце концов Деларье заявил, что изучение аэродинамики малых скоростей, характерных для махолетов, может само по себе дать богатую информацию по целому ряду дисциплин, но в коммерческое применение орнитоптеров он не верит.
Параллельно над проблемой машущего полета работал руководитель летно-исследовательской лаборатории имени Распета при университете штата Миссисипи Д. Беннет. Он испытывал радиоуправляемые орнитоптеры, поднимавшиеся на тросе за автомобилем. Беннет также пришел к невеселому выводу: «Должно быть, существует веская причина, объясняющая, почему братья Райт не построили махолет». Уже в наше время за дело взялись профессионалы из британских ВВС во главе с Роем Андервудом. Используя лучшие материалы и технологии, воссоздали птицу Леонардо, но она так и не полетела. Идею машущего полета пыталась реализовать группа американских инженеров под руководством Д. Фицпатрика. После очередной неудачи он подвел печальный итог: истрачено полмиллиона долларов, а итоги — кот наплакал.
Самые серьезные попытки создать махолет предпринял известный ученый Пол Мак-криди. Лет пятнадцать тому назад профессор, успешно работавший в НАСА, вдруг отошел от ракетных дел и организовал лабораторию, где для начала построил мускулолет, на котором Брайн Аллен перелетел Ла-Манш. Затем создал небольшую модель летающего ящера-птеродактиля. Она успешно прошла испытания в планирующем полете, и это вдохновило ученого на строительство большого махолета. В 1989 году на авиабазе Эндрюс под Вашингтоном состоялся первый демонстрационный полет. Спустя несколько секунд после отделения буксировочного троса отчаянно хлопающий крыльями птеродактиль перевернулся несколько раз и начал камнем падать на землю. Замешкавшиеся операторы слишком поздно передали команду выпустить парашют, и напичканная электроникой пластиковая модель стоимостью 700 тыс. долларов распласталась на бетоне взлетно-посадочной полосы.
«Теперь мы знаем, почему вымерли птеродактили», — шутили журналисты.
Когда мы полетим, как стрекозы и мухи?
Итак, как видите, особыми успехами махолетчики похвастаться пока не могут. Так быть может, и ну их — орнитоптеры? Жили же как-то без них. И дальше проживем. Но...
Генеральный конструктор был весьма озабочен.
— Перед коллективом КБ поставлена задача небывалой сложности, — сказал он, открывая совещание. — Нам поручено сконструировать летательный аппарат, который бы имел весьма экономичный и практически бесшумный двигатель; мог взлетать и садиться без разбега; с одинаковой легкостью летать в любом направлении и зависать в воздухе неподвижно; за минуту одолевать не менее чем десять тысяч длин своего корпуса и обладать дальностью полета в несколько тысяч километров... Прошу высказывать ваши соображения.
Генеральный сел, и в кабинете воцарилась тягостная тишина. Слышно было даже одинокое жужжание бившейся о стекло осенней мухи. Инженеры в задумчивости молчали. В самом деле, да разве можно создать нечто подобное?
Неожиданно слово попросил самый молодой из присутствующих, недавний выпускник авиационного института.
— Простите, — произнес он, — но мне кажется, такой летательный аппарат уже есть. Вот он. — И молодой инженер указал на оконное стекло, по которому ползла крупная осенняя муха...
Сознаюсь, историю с совещанием я придумал. Но то, что муха, как и многие другие насекомые, обладает уникальными летными качествами, — истина. Даже птицы — эти врожденные летуны — не способны проделывать те фигуры «высшего пилотажа», что без труда выполняют мухи, стрекозы, бабочки... А уж о разных наших механических летунах и говорить не хочется. Сравните: гиперзвуковой перехватчик пролетает в минуту не более 5— 6 тыс. длин своего корпуса, стрекоза же — свыше 100 тыс. длин! Полет насекомых — чрезвычайно сложный процесс. Он таит в себе множество загадок; некоторые из них решены лишь недавно, другие еще только ждут своих первооткрывателей.
Взгляните на крыло мухи через увеличительное стекло. С точки зрения современных специалистов самолетостроения, оно — форменное аэродинамическое безобразие. Все в желобках, вмятинах, микроскопических волосках... Шиферная крыша и то глаже. Такое крыло, вместо того чтобы сглаживать воздушный поток, похоже, специально его завихряет.
Любопытные сведения на этот счет сообщила мне старший научный сотрудник Института эволюционной морфологии, кандидат биологических наук О.М. Бочарова-Месснер:
— До сих пор считалось, что во время полета крылья насекомых погружены в так называемый ламинарный пограничный слой воздуха, который как бы сглаживает их поверхность. Теперь эту точку зрения приходится пересматривать: результаты исследований говорят о том, что на крыльях насекомых ламинарный пограничный слой, судя по всему, отсутствует. Видимо, так выгоднее при машущем полете... Похоже, сложный рельеф крыла, расчленяющий поток на отдельные струи, делает движение воздуха более упорядоченным. Конечно, для авиационного инженера в рисунке рельефа много непривычного. Например, даже то, что желобки идут не поперек, а вдоль крыла, от основания к краю. Но эксперименты показали, что при полете насекомого скорость потоков у основания крыльев выше, чем у краев. Значит, крыло как бы засасывает воздух у основания, а затем, распределив его по желобкам, направляет к краям, создавая дополнительную подъемную силу.
Это не единственная тайна, окружающая полет насекомых, в частности той же мухи. При скоростной кино- и видеосъемке заметно, что крыло насекомого весьма эластично — изгибается, скручивается, может даже сложиться, словно веер...
Крыло пронизано нервами и системой «кровообращения», по которой течет геомолимфа — жидкость, подобная крови человека. Кроме того, здесь огромное количество микродатчиков — своеобразных органов чувств. Щетинки, колбочки, заметные только под микроскопом, и регистрируют скорость встречного потока воздуха, и отмечают всевозможные крутящие моменты, и помогают насекомому ориентироваться в пространстве... Остается лишь сожалеть, что подобными приборами человек пока не может оснастить крылья своих летательных аппаратов.
А каков «двигатель» у насекомого! Целый день висеть в воздухе не уставая, развивать скорость до 150 км/ч, покрывать в сутки расстояние 1200 км... Сколько бы горючего потребовали на это современные авиационные моторы! Бабочки же, стрекозы, мухи обходятся всего лишь несколькими каплями нектара или крохами с нашего стола.
Любопытно: мышцы, дающие движение крылу, вовсе с ним не связаны! Дело в том, что крыло прикреплено к мягкой перепонке, которая разделяет спинной и боковой отделы спинного панциря. На ней крыло может двигаться почти свободно, опираясь лишь на небольшой «столбик» — маленький, но очень крепкий вырост в верхней части бокового отдела груди. При этом та самая мягкая перепонка, к которой крепится пластинка крыла, позволяет перемещаться вверх-вниз спинной части панциря. При таких движениях, совершаемых за счет мышц, панцирь тянет за собой внутренние кончики крыла. И хотя такие перемещения еле заметны, за ними следует большой взмах лопасти крыла благодаря неравномерности плеч его рычага. Такая сложная система имеет определенные преимущества. Известно ведь, что сокращение мышцы вызывается нервным импульсом. Так вот, ни у одного живого существа планеты нервная система не способна дать более 500 импульсов в секунду. Некоторые же насекомые, например мелкие комарики цератопогониды, способны совершать до 1 тыс. взмахов в секунду. Каким образом? Есть предположение, что растянутые мышцы возвращаются в первоначальное положение самостоятельно, без команды нервной системы.
Благодаря координированной работе датчиков и мышц крылья насекомого выписывают в полете сложные фигуры. Ударяя своими краями о воздух, словно веслами о воду, они позволяют двигаться вперед и назад, неподвижно зависать в воздухе или лететь боком, выполнять головокружительные маневры... Уникально и «навигационное оборудование» мух, стрекоз, бабочек и прочих летунов из мира насекомых.
Известно, что пчелы, «загрузившись» нектаром, летят к своему улью по прямой. Как они вычисляют правильное направление? Говорят, ориентируются по солнцу даже в том случае, если оно скрыто сплошной облачностью, поскольку глаза-фасетки умеют определять поляризацию света, а следовательно, местоположение его источника. А там уж природный компьютер мгновенно определит и нужное направление...
И наконец, еще одна придумка природы, на которую, думается, стоит обратить внимание конструкторам летательных аппаратов, — мушиное «шасси». Оно ведь намного совершеннее, чем колесные тележки современных самолетов. Последним подавай гладкую бетонную полосу, муха же бегает по какой угодно поверхности, и не только горизонтальной, но и вертикальной. Ей ничего не стоит прогуляться и по потолку. Почему она не падает?
Точного ответа на этот вопрос у исследователей пока нет. Одни полагают, что муху держат присоски на кончиках лап. Другие считают, что все дело в специальном клее. Третьи склоняются к тому, что дело не обходится без специальных электрореологических жидкостей... А еще биологи выяснили: мухи теми же лапками проводят доскональный химический анализ поверхности, по которой ступают. И уж, конечно, не пропустят ничего съестного...
В момент опасности шесть лапок — исследовательских зондов — мгновенно превращаются в упругие пружинки. Миг — и муха уже в воздухе, словно подброшенная катапультой.
- Только никакая современная катапульта не обладает такой скорострельностью, компактностью и экономичностью...
А теперь вернемся к тому совещанию, которое я описал вначале. Скорее всего, оно закончится безрезультатно. Конструкторы констатируют, что до природы им еще далеко, разойдутся по своим рабочим местам, где на кульманах чертежи все тех же самолетов и вертолетов. А может, пора уж переходить к созданию мухолетов и стрекозокрылов? Ведь такую идею еще в 1969 году подал инженер В. Филиппов из Северодвинска и даже представил фантастический полет. Вот строки из его описания:
«...Включаем механизм крыльев... Машут! За землю бы не задели только. Включаем тягу на взлет. Ух ты! Наш мухолет так и рвется кверху. Сбавляем газ и усаживаем мухолет в положение катапультирования.
Стрелка стартового манометра подходит к нужной отметке. «Контакт!» Резкий рывок — и мы летим вверх под углом в сорок пять градусов. Вспыхивает лампочка «Крылья» — и вдруг наш мухолет резко уходит вверх и назад... Куда это нас несет?.. Ба! Да ведь надо убрать стартовые шасси: сложить ноги. Ну вот теперь дело лучше, но все равно тянет и тянет кверху. В чем дело? Наверное, надо дать рычаг вперед. Ну конечно, вот и выровнялся наш мухолетик, потянул вперед над городом.
Выключаем мотор, переходим на парящий полет. Тишина, только крылья шуршат, словно паруса. Это воздушные вихри тянут, держат наш мухолет-вихрелет. Вот озеро, луг, зеленые насаждения. Снижаемся и сажаем свое сооружение прямо между кустов...»
Как видим, идея витает в воздухе. Правда, ее осуществление, похоже, в ближайшее время не предвидится. Хоть первые робкие попытки и предпринимаются. Вспомним хотя бы о тех же махолетах из Воткинска. Но чтобы рукотворные аппараты летали столь же виртуозно, как насекомые, нам еще предстоит учиться и учиться. У мух и стрекоз.