Жизнь в море только внешне может выглядеть хаотичной. На самом деле все морские организмы связаны, так сказать, пищевыми цепями, и фитопланктон находится в основании этих цепей. Это означает, что, поражая водоросли, вирусы регулируют количество корма для организмов, питающихся планктоном, прежде всего рыб и мелких ракообразных. Кроме того, фитопланктон вырабатывает кислород, и получается, что вирусы могут влиять на содержание кислорода в морской воде и в атмосфере. Обнаружено, что при разрушении вирусами некоторых одноклеточных водорослей выделяется газ диметилсульфид, который, попадая в атмосферу, способствует конденсации водяного пара и образованию облаков. Таким образом вирусы могут влиять на погоду, как ни фантастично это звучит. Вирусная инфекция имеет непосредственное отношение к прекращению цветения воды, наступающей при бурном размножении водорослей.
Вирусы можно найти и в пресных водоемах. Например, в планктоне Ладожского озера их оказалось несколько миллиардов в одном литре воды, то есть содержание вирусных частиц в относительно чистом пресноводном озере может быть не меньше, чем в морской воде. Встречались главным образом хвостатые бактериофаги с головкой различной формы и отростком разной длины, а также нитевидные вирусные частицы, которые могли быть или фагами, или вирусами растений. Кроме того, обнаружены крупные сферические вирусы, покрытые оболочкой.
Любопытнейшую находку сделали американские вирусологи. Они нашли фаги, заражающие бактерию сульфолобус. Казалось бы, что особенного? Выделяя тот или иной вид бактерий, исследователи обычно обнаруживают и соответствующие фаги. Но дело в том, что сульфолобус живет в горячих серных источниках при температуре около 80 градусов. В этих источниках газ сероводород, выделяющийся из толщи горных пород, превращается в элементарную серу. Ей–то и питается сульфолобус, попутно выделяя серную кислоту. Но даже жизнь в горячей серной кислоте не спасает от настырных бактериофагов. Сульфолобус обнаружен в кислых горячих источниках в Исландии, Новой Зеландии, на Камчатке, в Иеллостоунском национальном парке США, Италии, Сальвадоре, Доминиканской республике и в Японии, и всюду в этих же источниках обнаружены фаги, заражающие этот микроорганизм.
Фаги сульфолобуса очень разнообразны. Среди них обнаружены формы, совершенно невиданные не только у бактериофагов, но и у вирусов вообще. Например, встречаются вирусы, похожие на веретено, при этом они любят собираться в розетки. Другие тоже выглядят как веретено, но их частицы намного крупнее и сильно утолщены посередине, так что их центр смахивает скорее на лимон. Обнаружены вирусы в форме капли. И все они, подобно своему хозяину сульфолобусу, тоже вынуждены жить в почти кипящей серной кислоте. Как им это удается, пока непонятно.
Фаги – лекари
Кажется, что фаги просто созданы для лечения бактериальных инфекций: они уничтожают только болезнетворного микроба, а не всех скопом, как антибиотики; они безвредны для организма, их количество по мере уничтожения микроба не только не падает, а, наоборот, возрастает – и тем не менее, широкого распространения как средство борьбы с болезнетворными микробами бактериофаги не получили.
А ведь было время, когда казалось, что найдена чуть ли не панацея. Инициатором был все тот же Д’Эррель. Изучая причины эпидемии дизентерии, он обнаружил, что количество фага, небольшое в начале заболевания, очень сильно возрастает по мере его развития и достигает максимальных значений, когда больной пошел на поправку. Напрашивался вывод: развитие фага, заражающего данную патогенную бактерию, является причиной выздоровления больного от инфекционного заболевания.
Не в традициях Пастеровского института (а Д’Эррель в 1917 году работал именно в нем) было медлить с внедрением новшеств в медицинскую практику. Поначалу все же решили попробовать на цыплятах. Куры болели сальмонеллезом, их надо было как–то лечить, а антибиотики еще не были открыты. Выяснилось, что бактериофаг, введенный через клюв или путем инъекции, снижал смертность, укорачивал время эпидемии и предотвращал ее повторное развитие. Вскоре эти результаты подтвердили другие исследователи в Голландии. Фаготерапия оказалась очень эффективна при лечении заражения крови у буйволов в Индокитае, тогда еще французской колонии. После этого Д’Эррель решил попробовать эффективность фаготерапии на себе. Вначале он проверил безопасность сальмонеллезного фага как такового, глотая все возрастающие его количества, и не обнаружил ни малейшего вреда от этой процедуры. Не избежали участи подопытных кроликов и члены его семьи, проделавшие то же самое. После этого Д’Эррель выяснил, опять–таки экспериментируя на себе, на членах своей семьи и на своих сотрудниках, что подкожные инъекции бактериофага тоже не вызывают побочных реакций. Было решено, что фаготерапию можно внедрять в клиническую практику.
О фаготерапии заговорили, когда Д’Эррель вылечил – ни много, ни мало – четырех больных бубонной формой чумы. Когда он работал в Александрии (этот непоседливый ученый объездил практически весь мир), случилось так, что Суэцким каналом проходило судно с больными чумой на борту. Д’Эррель сделал инъекцию противочумного фага прямо в бубон, и больные выздоровели.
Это открытие привлекло всеобщее внимание. Появилась великая надежда на создание универсального способа лечения! Да и первые результаты оказались весьма обнадеживающими. За короткое время были обнаружены бактериофаги, эффективные против возбудителей сибирской язвы, скарлатины, тифа, холеры, дифтерии, гонореи, паратифа, бубонной чумы. Этот непредвиденный способ избавления человечества от ряда самых опасных заболеваний воспламенил общественное воображение. Работы по фаговой терапии наводнили медицинскую литературу. Откликнулись и писатели. Герой романа Синклера Льюиса "Эроусмит", написанного в 1924 году, решает заняться практическим применением фаготерапии. Когда на островах Карибского архипелага вспыхивает эпидемия бубонной чумы, он немедленно отправляется туда, чтобы испытать свой бактериофаг. Однако, возбудитель чумы не спешил погибать от чумного бактериофага, а вот жена Эроусмита и его ближайший сотрудник погибли во время испытаний. Эроусмит возвращается в Нью–Йорк и решает посвятить свою жизнь уже не практическому применению бактериофага, а изучению его природы.
Но крестовый поход за уничтожение бактериальных заболеваний с помощью фага продолжался. Британское правительство пригласило Д’Эрреля в Индию для борьбы с холерой. Лучших условий для проверки эффективности фаголечения нельзя было и представить! Возбудитель находится в желудочно–кишечном тракте, способ передачи и эпидемиологические характеристики холеры хорошо изучены, убитые бактерии перестают выделять токсин, и нет никакой вакцины против этого страшного заболевания. Проведенные в Индии в 20–30–х годах XX века работы показали: применение холерного фага облегчает течение заболевания, снижает его продолжительность и смертность от холеры.
Фаги пробовали использовать для предупреждения нагноения огнестрельных ран в Красной Армии во время Финской войны и в армии фельдмаршала Роммеля, воевавшей в Северной Африке во время Второй мировой войны.
Кто знает, как сложилась бы дальнейшая история фаготерапии, но Д’Эррель просидел всю войну в Виши под домашним арестом, работа Туорта была прервана в 1944 году, когда его лаборатория была разрушена немецкой бомбой. Кроме того, энтузиазм Д’Эрреля разделяли немногие, и важнейшей причиной была та, что о природе бактериофагов практически ничего не было известно. Даже то, что бактериофаг – это вирус, признавали далеко не все. Но самая главная беда для фаготерапии пришла, откуда не ждали – появились антибиотики. Легкость их получения, известный химический состав, широкий спектр действия и масса других достоинств обеспечили антибиотикам быструю победу в состязании с фагами.
Оттесненные на далекую периферию, исследования по фаготерапии все же продолжались. Под контролем Всемирной организации здравоохранения в 70–х годах XX века в Пакистане было проведено изучение эффективности холерных фагов, аналогичное довоенным исследованиям в Индии. Было установлено, что использование очень высоких доз фага (100 – 200 фаговых частиц на один холерный вибрион) позволяет добиться таких же результатов, как и применение тетрациклина, а если фага брать меньше – скажем, одну частицу фага на один вибрион – то никакого эффекта обнаружить не удается. В 80–х годах открыли, что бактериофаги уничтожают патогенные варианты кишечной палочки в кишечнике телят, причем делают это не хуже, чем тетрациклин, ампициллин или левомицетин. С помощью бактериофагов пробовали бороться с бактериальной порчей мясных продуктов, однако результаты оказались не слишком впечатляющими. Более успешным оказался опыт применения бактериофагов для лечения бактериальных заболеваний рыб, моллюсков (мидий и устриц) и ракообразных (крабов, креветок, омаров и тому подобных обитателей) – нет, не морских глубин, а тех, что искусственно разводят в бассейнах. В ограниченном водном пространстве фаг действует очень эффективно.
В медицине фаготерапия применяется сейчас главным образом при острых кишечных инфекциях. В этих случаях бактериофаг вводят* через рот, как микстуру, предварительно нейтрализовав кислотность желудочного сока, иначе фаг теряет в желудке активность. В последние годы фаги, используемые для лечения, изготавливают со специальным покрытием, которое препятствует разрушительному действию желудочного сока. Например, для лечения дизентерии может назначаться дизентерийный бактериофаг, эффективный против различных видов шигелл. Препарат выпускается в жидком виде и в таблетках с кислотоустойчивым покрытием. Фаги используют для ликвидации хронических очагов внутрибольничной инфекций в стационарах.
И все же антибиотики представляют собой гораздо более эффективное средство лечения бактериальных инфекций. Однако, появилось огромное количество болезнетворных бактерий, устойчивых к антибиотикам. Общеизвестны побочные эффекты применения антибиотиков. С другой стороны, уже давным–давно выяснена природа бактериофагов. Поэтому в последнее время наблюдается новый всплеск интереса к фаготерапии и, вполне возможно, у этой главы когда–нибудь появится продолжение.