На первый взгляд растение, по сравнению с животным, находится в выигрышном положении. И процесс метаболизма идет у него, как ни крути, не столь интенсивно, и, главное, ему не требуется вода для вывода «отходов». В отличие от животных, большинство растений выделяет отходы своей биохимической кухни в сухом виде. Или просто блокирует их в собственном теле, в частности, в мертвых клетках пробки и вторичной ксилемы. Поскольку бегать растению не надо, то его эти склады мусора не тяготят. Даже наоборот. Большинство отходов токсично, и откладывая их в своей ткани, растение снижает свою съедобность, что идет ему только в плюс. Однако ещё триста лет назад натуралисты установили, что растение потребляет в двадцать раз больше воды, чем животное аналогичного веса. В чем дело? Дело в том, что у растения нет мышц, которые, тем или иным способом «гоняют» воду в теле животного. Движение соков у растения устроено совершенно иначе, и именно перенос веществ от корневой системы к листьям требует от растения ненасытно сосать, сосать и сосать воду из почвы.
Воду и минеральные вещества растение получает из почвы через корневую систему, и по каналам ксилемы раствор поступает к листьям. Это известно давно, и существует масса простых и остроумных опытов, которые это доказывают. Но каким образом вода, несущая раствор минеральных веществ, поднимается вверх? Причем это «вверх» у самой обычной сосны, березы или осины составляет 30–40 метров, а у секвойи и эвкалипта известны деревья высотой в полторы сотни метров. Насос растению нужен очень мощный – представьте, что вы пытаетесь напиться через трубочку из колодца стометровой глубины. Как же этот насос устроен и где он расположен? По ходу движения, в сосудах ксилемы, таких насосов нет, ведь ксилема состоит из мертвых клеток – это, по сути, обычная водопроводная труба. Значит, воду необходимо или «толкать» снизу (тогда насос надо искать в корневой системе), или «тянуть» сверху (тогда его надо искать в листьях). Насос этот должен быть весьма мощным – чтобы поднять воду в крону березы, нужно давление около 3–4 атмосфер, а в крону старой секвойи – около 15 атмосфер.
image l:href="#image127.png"
Транспорт воды в растениях (.схема): 1 – подъём воды с минеральными солями вверх по ксилеме;2 – транспорт сахаров от листьев к корням и др. органам
Клетки эпидермы корня активно поглощают из почвенного раствора ионы минеральных веществ. Это именно активный перенос через мембрану, с участием особых переносчиков и затратами энергии. В результате в клетках корня (в том числе и в растворе, заполняющем ксилему) создается концентрация ионов, в десятки раз превышающая концентрацию почвенного раствора. По закону осмоса вода из почвы устремляется в клетки корня и в ксилему. Объем раствора увеличивается, возникает так называемое корневое давление, которое заставляет раствор подниматься вверх по ксилеме. Однако корневое давление у всех растений, у которых оно есть, оказалось невелико, оно совершенно недостаточно, чтобы поднять воду в крону высокого дерева. А у многих растений, в частности у хвойных, корневое давление вообще не развивается.
Как оказалось, насос, поднимающий воду, расположен в листьях. Когда вода испаряется с оболочек клеток мезофилла, окружающих полости внутри листа, концентрация раствора в клетке увеличивается. Клетка «оттягивает» воду от соседей, лежащих глубже, и так далее, «по цепочке», пока очередь не доходит до сосудов ксилемы, расположенных в жилке. В результате устанавливается натяжение воды в сосудах ксилемы. Вода практически не сжимается (и, следовательно, не растягивается), а столб воды очень прочен на разрыв – около двух тонн на квадратный сантиметр сечения. В результате натяжение достигает корней и вытягивает из них раствор, а корни, в свою очередь, вытягивают воду из почвы. В результате вода движется вверх, неся с собой минеральные вещества и непрерывно поддерживая влажность клеточных оболочек мезофилла. А это, как мы уже говорили, необходимо для поддержания газообмена с атмосферным воздухом.
В таком способе транспортировки воды есть один, очень большой, плюс. Если корневое давление (равно как и циркуляция раствора при помощи мышечных сокращений) требует от организма затрат энергии, причем затрат весьма существенных, то при системе транспирационного транспорта растение не тратит ничего – используется непосредственно энергия солнца. Но каждое достоинство имеет свое продолжение в виде недостатков. Недостаток данной системы столь же велик, как и её достоинство – растение вынуждено расходовать огромное количество воды. Кроме того, насос этот плохо работает, когда холодно и вода плохо испаряется. С этим обстоятельством связана «арктическая засуха». Растения северных мест, как правило, страдают от недостатка воды, хотя в почве её полно, и часто имеют облик, схожий с растениями пустынь – мелколистность, плотные покровы, густое опушение стеблей и листьев.
Транспортировка органических веществ по флоэме также основана на законах осмоса, но требует очень активного участия клеток и расхода энергии. Суть дела довольно проста. Сахара, которые синтезируют хлоропласты в клетках мезофилла, путем активного переноса через мембраны загружаются в клетки флоэмы. На всякий случай напоминаем, что клетки флоэмы, в отличие от клеток ксилемы, – живые. Загружаются клетки флоэмы через клетки–спутники (вспомните раздел «Вид растения изнутри»), которые и несут основные энергетические расходы по загрузке. В месте потребления, например в зоне роста корня или побега, клетки флоэмы так же активно разгружаются. В месте загрузки концентрация клеточного содержимого увеличивается, клетка начинает активно «сосать» воду из проходящего рядом сосуда ксилемы, вода «распирает» клетку, возникает повышенное давление. В месте разгрузки – все наоборот. В результате разницы давлений и происходит ток раствора по трубке флоэмы от одного органа к другому. Кстати, по флоэме транспортируются не только сахара, но и другие продукты синтеза, в частности аминокислоты, хотя и в меньшем объеме.
Сосудистые и не очень
Около четырехсот сорока миллионов лет назад, в начале силурийского периода, поверхность материков была пустыней, грунт в которой местами покрывала тонкая пленка цианобактерий и одноклеточных водорослей. Но низменные берега водоемов, вероятно, уже зарастали ковром из созданий, более всего напоминавших ветвящиеся зеленые макароны, со светлыми вздутиями на кончиках приподнятых ветвей. Вероятней всего, именно так выглядели первые зеленые растения или, скорее, существа, стоящие на пол пути от водорослей к растениям. Эти «макароны» дали начало двум ветвям растительного царства – моховидным растениям (они же бриофиты) и растениям сосудистым. Не исключено, правда, что бриофиты и сосудистые произошли от разных групп зеленых водорослей, но большинство ботаников склоняется к мысли, что у них был один предок.
image l:href="#image128.png"
Первые сухопутные растения
Одно из различий между моховидными и сосудистыми отражено в их названии – у моховидных иначе устроены проводящие ткани. Впрочем, не так уж велико различие. Проводящая жилка несет центральный пучок мертвых клеток (гидроидов), который окружен клетками с дегенерировавшим ядром и живым протопластом (лептоиды). И те и другие вытянуты и соединяются скошенными концами в цепочки, первые проводят воду, вторые – органические вещества. И по структуре, и по взаимному расположению проводящие клетки бриофитов очень напоминают ксилему и флоэму сосудистых, особенно хвощей и папоротников. Конечно, строение проводящего пучка моховидных намного проще, но ботаники считают, что проводящие клетки мхов и сосудистых растений происходят от одних и тех же групп клеток их общего предка. Просто моховидные почему–то не стали совершенствовать проводящие ткани и удовлетворились их примитивным состоянием.
image l:href="#image129.png"
Печёночник маршанция многообразная Антоцеротповыи мох
image l:href="#image130.png"
Листостебельные мхи
В отделе моховидных три класса: печеночники, антоцеротовые мхи и листостебельные мхи. Многие ботаники считают эти группы не классами, а отделами, независимо произошедшими от разных предков. Все моховидные – некрупные растения, хотя ветвящиеся гаметофиты некоторых мхов могут достигать полуметра в длину. И всем моховидным, даже тем, что растут в пустыне, для оплодотворения нужна вода, хотя бы в виде росы.
Размножение мхов
Спора мха, попав в подходящие условия, начинает делиться и возникает организм, удивительно похожий на нитчатую водоросль, – протонема. На нитях протонемы через некоторое время появляется «шишка» из группы клеток. Это своего рода почка, из которой разовьется то самое растение, которое мы привыкли называть мхом. И спора, и протонема, и мох обладают одинарным набором хромосом – гаплоидны. На верхушках побега мха образуются половые органы – архегонии (женские) и антеридии (мужские). Это крошечные «кувшинчики», которые можно разглядеть только при помощи приличного увеличительного стекла. В архегонии формируется одна крупная яйцеклетка, в антеридии – множество мелких клеток со жгутиками – спермии. Эти половые клетки и есть те самые гаметы, от которых произошло название поколения – гаметофит.
Далее требуется дождь или роса, которые создадут пленку воды, чтобы спермии могли доплыть до архегониев и слиться с яйцеклеткой, образовав диплоидную зиготу. У некоторых бриофитов спермии выбираются из антеридиев самостоятельно и наудачу отправляются в плавание. У некоторых они выдавливаются наружу и ждут попадания дождевой капли, чтобы разлететься с брызгами в разные стороны. Добраться до архегония удается единицам из тысяч. Зигота делится, и в кувшинчике архегония формируется зародыш спорофита – следующего, диплоидного, поколения. Зародыш получает питание от гаметофита через клетки архегония. На начальном этапе архегоний вдобавок защищает юного потомка от враждебного окружающего мира. Спорофит растет, высовывается из архегония, вытягивается на длинной ножке, но остается прикрепленным к гаметофиту особой структурой – стопой, через которую гаметофит продолжает его питать. На верхушке спорофита формируется особая структура, спорангий, в котором в результате мейоза образуются гаплоидные одноклеточные споры. Споры разносятся ветром или водой, а у многих моховидных спорангии устроены таким образом, что, созревая, лопаются, с силой разбрасывая споры в разные стороны. Споры, рассыпавшись по окрестностям, в свою очередь начинают делиться, давая каждая начало новому гаметофиту.