По существу, здесь действовал, торжествовал тот же, что и в уравнении Иванова, балансный подход. Только он очень усложнился. Так трудом многих исследователей разных стран создавались и совершенствовались модели урожая.
Теперь о роли математики. Без нее труд ученых, занятых исследованием отдельных биологических блоков, оказался бы для теории урожая потерянным. Мозаику отдельных частностей надо было соединить в стройную картину. Это положение, как остроумно заметил один математик, аналогично тому, как если бы, взглянув на разобранные детали часов, мы попытались узнать по ним, который теперь час. И как бы хорошо детали эти ни были изготовлены, они никогда не покажут время, пока мы их правильно не соединим и не приведем в движение.
В теории урожая (говорят еще о теории продуктивности посева, значительный вклад в это дело внесли советские ученые — член-корреспондент АН СССР Ничипорович, Росс и другие) «узнать время» удалось только лишь благодаря математике. Дело в том, что за линиями, связывающими главные узлы «зеленой машины», скрываются формулы и уравнения, часто очень сложные, дифференциальные и интегральные — высшая математика (!), которые количественно описывают обмен энергией и веществами. Весь спектр данных о погоде, о состоянии почвы и атмосферы, сведения о «самочувствии» посевов — ученые стараются учесть все, что может оказать влияние на формирование урожая — кодируется в интегралах и дифференциалах, в буквенных обозначениях. Так сконструированная с помощью биологов и агрономов кибернетическая модель стала еще и математической, содержащей обычно многие десятки коэффициентов и параметров.
Конечно, математическая трактовка реально идущих в природе процессов и явлений еще довольно груба. И неудивительно: научный поиск в этой области начат не так давно, лет 20 назад, и возникающие тут проблемы необычайно сложны. К примеру, влияние погоды нельзя правильно оценить, не зная предшествовавших условий. Солнечная сухая погода может быть чрезвычайно полезной растениям, если до этого было влажно. Однако те же условия снизят урожай, если запасы влаги в почве невелики.
Да, предыстория играет первостатейную роль. Растения снесут и засуху, если успели развить мощную корневую систему, а так это или нет, определяется условиями предшествующего периода вегетации. Так и получается, что растения как бы суммируют прошлые условия погоды, и их реакция на текущее во многом определяется этой «памятью».
Математизация идущих в растениях процессов начата. Дело это не может не принести богатых плодов. Об этом еще будет разговор. Сейчас же отметим одну новую возможность, которую математика подарила сельскому хозяйству.
Поговорим о программировании урожая. Суть этих слов в том, что человек хочет не просто ставить рекорды, получать урожаи по 400–500 центнеров зерновых с гектара; биофизики считают, такое вполне возможно. Он еще желает научиться управлять урожаями, проектировать их и, главное, делать их гарантированными.
Большой урожай — это всегда совпадение труда земледельца, его усилий с благоприятными внешними условиями, прежде всего, погодой. Но такая лотерейная, так сказать, удача — редкость. Уповать только на подарки судьбы не стоит. Жизнь требует иного. Необходимо так ставить задачу, чтобы на каждом поле брать столько зерна, картофеля или хлопчатника, сколько данная нива способна дать. Вот тут мы и подходим к программированию урожаев. К направлению, его у нас в стране возглавил академик ВАСХНИЛ Иван Семенович Шатилов, которое начало развиваться в науке совсем недавно.
Конечно, есть обстоятельства, которые не подвластны пока воле человека. Особенно погодные: внезапные морозы, губящие озимые, незапланированная жара, не ко времени затяжные дожди. Как же в этих условиях программировать урожай? Как добиваться стабильности? Какие принимать меры? И можно ли? Математика отвечает: да. Точный количественный учет всех факторов — особенности данного региона, режим влагообеспечения, минеральная подкормка растений и так далее — позволяет сформулировать условия, необходимые для получения гарантированных, скажем, 30 центнеров зерновых с каждого гектара в среднем.
Но, допустим, мы хотим получить не 30, а 40. Что ж! Следует, отвечает математика, принять дополнительно такие-то меры. Хотите получить 50? Необходимо сделать сверх этого еще то-то и то-то. Совершенно понятный ход событий — сколько вложишь труда и средств, столько и получишь! Как говорят в народе: без труда не вытащишь и рыбку из пруда!
И все-таки как быть со случайностью? Ведь обстоятельства каждый год складываются по-иному. Раз на раз не приходится! Накладки, сбои, непредвиденные трудности неизбежны. «Рулетка» природы вертится безостановочно. И, как поется в песенке Булата Окуджавы, госпожа Удача то смотрит земледельцу прямо в лицо, то откровенно поворачивается к нему спиной. Годы неудач неизбежны, тут уж ничего не поделаешь. Но программирование урожаев и не ставит себе целью раздавать страховки, начисто устранять урожайные аварии. Нет, задача здесь другая. Когда толкуют об определенной величине урожая, одновременно обязательно указывают и вероятность (снова математика! — теперь уже теория вероятностей) его получения. Если, например, вероятность получения урожая равна 0,6 — это значит, что в шести из каждых десяти лет будет получен урожай, равный или несколько больший программированного. В то же время в остальные годы урожаи могут быть и меньше программируемого.
Нас не устраивают 6 шансов из 10? Что ж, можно и уменьшить степень риска, заложив в расчеты новую вероятность получения урожая, скажем, 0,9: девять благоприятных сезонов на один неблагоприятный. Понятно, величина запрограммированного урожая при этом будет меньше, чем в случае с шансами 0,6. Если, конечно, об этом уже упоминалось, земледельцы не пойдут на новые траты, на дополнительные усилия: ассигнование денежных и материальных средств, профилактические меры и т. д.
До сих пор в рассуждениях об урожае мы слово это трактовали по Иванову: определяющим процессом тут молчаливо считался фотосинтез. Казалось бы, мысль эта очевидная, не стоило ее и оговаривать. Однако не все согласны с этим. Академик Сергей Павлович Костычев, например, по этому поводу писал так: «Не фотосинтез создает урожай, а само растение с помощью фотосинтеза, в зависимости от внешних условий». Гораздо более важными, чем фотосинтез, Костычев считал процессы роста и развития.
Рост растения. Интереснейшая тема! В романе Герберта Уэллса «Пища богов» от чудесной пищи цыплята становились величиной с лошадь, крапива могла тягаться ростом с пальмой, крысы были страшнее тигра, и по земле разгуливали люди-гиганты величиной с колокольню.
Развитие растений. Конечно же, это процесс, как и фотосинтез, для урожая ключевой. Не будем обсуждать детали и тонкости спора, возникшего между научными школами Костычева и Иванова. Однако совсем обойти проблему «Рост растений и урожай» нам не следует.
Кто-то сравнил удивительную координацию развития растения (так, все листья на дереве могут развернуться в один и тот же день) с координацией движений органиста, использующего все пальцы рук и обе ноги, чтобы играть четырехголосную фугу Баха. Этот образ вспомнился мне, когда я входил в здание Белорусского научно-исследовательского института земледелия, что находится в городе Жодино под Минском. Здесь, как я слышал, изучению роста растений придают особое значение и даже сконструировали для этого специальные приборы — ростомеры.
Правда, сознаюсь, эти устройства представлялись мне совсем по-иному. Вообразите, что рост измеряют таким необычным способом. Нить с грузом перекидывается через подвижное колесико и… прикрепляется к вихрам ребенка. Постепенно — с годами! — груз будет опускаться, и связанная с ним стрелка на особой шкале будет отмечать увеличение роста.
— То, что не годится для людей, — говорил мне кандидат биологических наук, старший научный сотрудник лаборатории физиологии растений БелНИИ земледелия Константин Георгиевич Шашко, он помог мне познакомиться с наиболее интересными работами института, — может быть полезным, когда имеешь дело с растениями. Ведь в их жизни есть периоды, когда они растут буквально не по дням, а по часам. К примеру, побеги бамбука за минуту вытягиваются на доли миллиметра, что в пересчете на сутки дает десятки сантиметров прироста…
Измерение роста растений и их органов дело деликатное. Честно признаемся, о том, что понимать под ростом, ученые спорят до сих пор. Казалось бы, тут достаточно простой линейки. Так и поступают обычно на практике. Однако точность таких промеров невелика, потому их проводят не чаще чем раз в 5–10 дней.
Часы, минуты и даже секунды? Они также подвластны исследователям. К их услугам микроскопы с окулярными микрометрами, разнообразные средства фотографии и кинематографа. Но здесь ученый уже вынужден вести наблюдения за ростом в узких стенах лаборатории, а не в открытом поле.
Можно ли обручить точность с простотой? Можно ли создать дешевые механические ростомеры, производство которых легко было бы наладить в любом месте и в количествах, обеспечивающих довольно обширную программу исследований? Приборы, одинаково пригодные и в лаборатории, и в полевых условиях? Да, можно. Такие устройства — ауксанографы («ауксано» по-гречески значит «расту»), автоматически, без повреждений регистрирующие линейные изменения величины надземных органов растений — стеблей, листьев, побегов, ветвей, соцветий — и находящихся в почве, скрытых от глаз корнеплодов, клубней картофеля, создал коллектив ученых, которым руководит академик-секретарь ВАСХНИЛ Виктор Степанович Шевелуха.
— «Растение» и «рост» — слова одного корня. Должно быть, поэтому столь необходимы сельскому хозяйству простые и удобные ростомеры? — спрашиваю я у Шашко.
— Безусловно. Каждый вид растений имеет специфическую ауксанограмму. В ней зашифровано многое: способность переносить холод, засуху, циклы его роста, простои в развитии, когда рост временно прекращался. Ну а кроме того, рост растений — это один из важных количественных показателей урожайности посевов…