Сначала к суспензии клеток добавляют ПАВы — поверхностно-активные вещества. Они разрушают, ломают мембраны — стенки клеток и ядер. Картина при этом получается любопытная. На ваших глазах мутноватая жидкость, налитая в стакан или колбу, превращается в прозрачный вязкий клей, почти студень. Это длиннейшие нитевидные молекулы ДНК выходят в раствор из лопнувших ядер. Осажденные затем спиртом ДНК выпадают рыхлыми беловатыми волокнами, которые можно вынуть из стакана, наматывая их на стеклянную палочку.
Достаточное для работы количество ДНК получено. Но в каком они виде! Это каша обломков, обрубков. Как же выловить из этого хаоса, из случайно перемешанных обрезков нужный нам ген? Вполне определенную осмысленную последовательность букв ДНК?
Вот как описывает трудность подобной задачи доктор биологических наук Борис Михайлович Медников: «Представьте, — пишет он, — полное академическое собрание сочинений Пушкина, изданное тиражом в сотни миллионов экземпляров. (С таким количеством исходных клеток в колбе обычно имеют дело молекулярные биологи.) Весь тираж при этом напечатан в одну строчку на телеграфной ленте и перемешан в огромный ворох, который непрерывно перелопачивают (имитация теплового движения молекул в растворе), а стая жизнерадостных обезьян (это аналог ферментов нуклеаз, полностью избавиться от них при выделении молекул ДНК из клеток невозможно) рвет ленту, где им это понравится. Теперь представьте, что, не прикасаясь руками и не видя текста, с расстояния пятидесяти метров надо из этой кучи выбрать все ленты, на которых отпечатан, например, „Анчар“ или первая глава „Евгения Онегина“».
Примерно такого рода задача стояла перед учеными. И удивления достойно, что они с ней справились. Все тонкости этого дела мы пересказать, понятно, не в состоянии. Важен итог, то, что теперь исследователи умеют выделить любой нужный им ген.
С помощью рестриктаз и лигаз первые химерические молекулы ДНК, их еще называют рекомбинантными, были получены. Но что с ними делать? Ведь проявить свои необычные свойства такие молекулы наследственности могут, только находясь в каком-то живом организме. Начался поиск существ, способных приютить, приголубить рекомбинантные ДНК и дающих им возможность нормально удваивать свое число. Конечно, кров для химерических молекул следовало выбирать попроще. А что может быть проще бактерий, одноклеточных созданий, управлять которыми наиболее легко?
Бактерии. Один из наиболее древних эшелонов жизни. Миллиарды лет были единственными обитателями биосферы. Ни человека, ни животных, ни высших растений не было на Земле, а бактерии уже праздновали не одну весну. Да они и сейчас настоящие хозяева планеты. И мы живем среди них, как экзотические цветы жизни, как редкостные образования в тьмамиллиардной массе трудяг-невидимок. Бактерии истинные космополиты: они населяют толщи почв и все водные бассейны, они поселились и в нас самих, эти малютки буквально вездесущи. Это бактерии создавали и создают месторождения полезных ископаемых, они же превращают останки живых существ в материал для новой жизни, помогают нам переваривать пищу и готовить ее, увы, еще они способны и убить нас, вызвав болезни.
Для молекулярных биологов бактерии — заманчивый объект исследований. Подкупает простота их устройства. Это всего одна клетка (обычно палочковидной формы, по-гречески bakterion и значит «палочка»).
У них нет ядра, всего одна хромосома (у человека их 23), с одной ниточкой ДНК.
Однако мир бактерий очень велик — кого выбрать, предпочесть? Кто тут наиболее пригоден для манипуляций с генами?
Так получилось, что выбор молекулярных биологов пал на кишечную палочку, научное название Escherichia coli, микроорганизм, обнаруженный австрийским врачом Теодором Эшерихом (отсюда и название «ешерихиа коли») еще в 1885 году. Бактерия, обитающая в кишечнике человека как один из основных компонентов нормальной кишечной флоры.
В тех исследованиях, о которых идет сейчас речь, кишечная палочка стала основной «рабочей лошадкой». Ее достоинства? Простота культивирования: неприхотлива, питается сахаром, особенно любит глюкозу. Кроме того, эта бактерия очень хорошо изучена, имеется ее полная генетическая карта, известны основные пути обмена веществ, быстро размножается. Ее жизненный цикл — до деления — длится всего 40 минут.
Итак, приют, удобная гавань, пристанище для химерических молекул наследственности было найдено. За чем же дело стало? Осталось перенести рекомбинантную молекулу в приготовленное для нее логово. И тут снова случилась закавыка. Что значит перенести? Ведь не возьмешь же ДНК пальцами и не посадишь в бактерию, хотя бы потому, что она, словно крепость, окружена стенками-мембранами. Вновь препятствие, оно казалось неодолимым. И тут — в который раз! — благосклонная природа указала прямые и простейшие средства.
Один из побочных продуктов развития наук — создание всемирного языка. Все больше становится слов, что одинаково звучат во всех языках и имеют один и тот же смысл. «Спутник», «стресс», «композиты», «гены» — эти и многие другие слова равнопонятны ученому любой национальности.
А еще существует масса научных терминов, которые как бы ждут своего часа. Пока они употребляются лишь узким кругом людей, прячутся в тиши кабинетов и лабораторий, таятся до поры, но настает момент — и слово начинает блистать, как звезда первой величины. Такая судьба, безусловно, ожидает и слово «плазмиды».
Открыл плазмиды в начале 50-х годов американец Джошуа Ледерберг. Он обнаружил в кишечной палочке, кроме основной спиралевидной вытянутой во весь свой гигантский рост ДНК, еще и маленькие, свернутые в колечки ДНК.
О плазмидах дружно заговорили медики, когда в 1959 году было показано, что неэффективность многих антибиотиков обусловлена этими созданиями природы; они имеют особые гены устойчивости к антибиотикам. К примеру, вырабатываемый плазмидами фермент пенициллаза разрушает пенициллин, спасая бактерии от гибели. Что, конечно же, осложняет лечение больных. Парадокс, но лучший способ добиться того, чтобы антибиотик сохранил эффективность, — это вовсе не применять его!
Но нет худа без добра! То, что затрудняло работу медиков, пригодилось генным инженерам. Им как раз нужны были переносчики реконструированных молекул ДНК в живые объекты.
Правда, вначале на эту роль прочили вирусы-бактериофаги. Они действительно способны осуществлять генную буксировку, но они губят клетку, рубят сук, на котором сидят. Проникнув в клетку, вирус ведет себя как опасный хищник. Он переключает ресурсы клетки да удовлетворение своих нужд и примерно через полчаса губит ее. Клетка разрушается, и из нее вместо одного фага выпархивает сотня ему подобных, готовых творить новую агрессию.
Иначе поступает плазмида. Это микросоздание ограничивает свой аппетит, она в отличие от вируса не убивает клетку-хозяина. Если фаг подобен алчному хищнику, то плазмида напоминает домашнее животное, особенно собаку. Плазмида и приютившая ее клетка осуществляют симбиоз, их добровольный союз взаимовыгоден. Подобно верному псу, плазмида защищает бактерию от врагов, скажем, от пенициллина. Клетка же предоставляет плазмиде кров, ресурсы для питания, размножения.
Все эти доставившие медикам так много хлопот особенности сожительства бактерий и плазмид, а именно способность плазмид переходить «из рук в руки», легко проникать в клетки и жить в них, оказались благом для генной инженерии.
Так постепенно, шаг за шагом, возводилось то, что ныне зовется генной (генетической) инженерией. Странное это все же словосочетание. «Гены», святая святых живого — и тут же чисто техническое понятие «инженерия». Смысл, соединяющий эти далекие друг от друга термины, заключен в конструировании наследственных основ живого организма, так же как в технике собирают машины по заранее разработанным чертежам.
Спорят еще и о том, какое из прилагательных — «генная» или «генетическая» больше подходит к слову «инженерия». Большинство склонно придерживаться более широкого второго термина, говорить именно о генетической инженерии, подчеркивая, что тут речь идет не только о тасовании отдельных генов, ведь операции можно проводить и над геномами, и над клетками и их частями, и даже над зародышами. Поэтому кое-кто полагает, что вообще надо говорить о биоинженерии.
На наш взгляд, не так важно название новой профессии, сколько ее суть. Так что попробуем сейчас перечислить главные этапы работы биоинженеров:
1. Из клеток выделяются молекулы ДНК, а из них — нужные гены. Их словно карты тасуют, раскладывают генные пасьянсы, которые (скрепленные лигазами) и превращаются в химерические молекулы ДНК.
2. Теперь необходимо подыскать переносчиков. Как правило, это колечки-плазмиды, но переносчиками могут быть и фаги, и другие простейшие, способные внедряться, ввинчиваться в бактериальные клетки. Забавное название для переносчиков придумали американские исследователи из Висконсинского университета — разновидности одного из фагов они назвали «харонами», по имени мифического перевозчика душ мертвых до врат Аида, царства теней, через якобы находящуюся в подземном царстве реку Ахерон. В древности для уплаты за провоз покойнику клали в рот монету.
3. Зараженные плазмидами бактерии, кишечные палочки, к примеру, размножают и отбирают тех бактериальных потомков, которые по своим свойствам соответствуют замыслу генной операции. Миллиардное тиражирование бактерий — хорошо, что они быстро размножаются! — крайне важно. Только тогда можно наработать, накопить хотя бы миллионные доли грамма нужного вещества, чтобы уверенно работать с ним — расшифровать его состав, получить полезные продукты.
Дата рождения генетической инженерии известна довольно точно: 1972 год. Тогда в Станфордском университете американцем Полем Бергом были получены первые химерические молекулы ДНК. А если точнее, то Берг пришил ДНК обезьяньего вируса 40 (SV40), имеющегося в клетках человека и обезьян (у этого вируса всего пять генов), к ДНК фага, который и доставил генетическую информацию в кишечную палочку. Позднее, в 1980 году за эти опыты Берг был удостоен Нобелевской премии.