Но мало «почувствовать», куда направлен вектор тяжести. Надо еще соответственно прореагировать. Что направляет изгиб стебля вверх или корешка вниз? Поиск ответа привел к ауксинам, гормонам роста, химическим регуляторам, вырабатываемым верхушками побегов. А в 20-х годах нашего столетия возникла гормональная теория направленного роста: он идет в основном в тех частях растительного организма, куда транспортируются ауксины.
Геотропизм растений, в норме их корни и стебли располагаются по прямой, направленной к центру Земли, — проявляет себя в простых опытах. Поместим пробирку с ростком в клиностат. Это устройство не создает невесомости, но результат получается тем же. Растение заставляют непрерывно делать «кульбиты». Эти воздействия настолько быстры, что гравитационное раздражение не успевает достигнуть пороговой величины, которая способна вызвать ответную реакцию растительного организма.
Любопытно смотреть на две кучки прорастающих семян: одна получена в мире тяжести, другая — «в невесомости», на клиностате. В первой бледно-зеленые стебельки стоят, как в строю, параллельно друг другу, во втором — хаотично тянутся в разные стороны: у этих ни вершки, ни корешки не знают своего направления. Каждый проросток словно бы застыл в позе недоумения.
Та же картина наблюдалась в космосе: удрученные, «дезорганизованные» ростки быстро гибли.
Итог всех и космических и наземных опытов по изучению геотропизма все ж не столь обескураживающ, как это могло бы показаться с первого взгляда. Во-первых, эти исследования позволяют проникнуть во многие еще не разгаданные тайны живого.
Во-вторых, неожиданно выяснилось, что растениям необходима не вся сила земной гравитации, а скорее намек на нее. Достаточно, чтобы пороговая величина гравитационного раздражения составляла тысячные доли от силы земного тяготения. Тогда растение уже может развиваться вполне нормально. Этот важнейший вывод проходит проверку в космосе.
Ну а в-третьих, установлено, что отсутствие гравитации в космосе можно компенсировать разными способами.
Холод Арктики, иссушающая жара пустынь, разреженный воздух высокогорья и густая стопроцентная влажность тропиков — многое одолели растения Земли на трудном и длительном пути к совершенству. Теперь перед ними новый барьер — невесомость.
Есть ли тут у растений какие-то шансы? Безусловно. Вот доказательные опыты. Две пустившие небольшие зеленые перья луковицы поместили в клиностат. Полиэтиленовые стаканчики с растениями каждые две секунды поворачиваются то вверх, то вниз корнями. А теперь главное: к одной из луковиц подвели электрический ток, другая, контрольная, продолжала расти сама по себе.
Такие попытки компенсировать отсутствие гравитации электричеством начали ученые Смоленского филиала сельскохозяйственной академии имени К. А. Тимирязева и ВНИИ электрификации сельского хозяйства. Затем эти эксперименты продолжили космонавты Леонид Кизим, Олег Макаров и Геннадий Стрекалов на корабле «Салют-6».
Испытания были успешными. Буквально в первые же сутки ростки контрольного растения стали беспорядочно изгибаться, разошлись в стороны. На шестые сутки начали появляться перетяжки на перьях, а кончики их увяли — все свидетельствовало о близкой гибели растений. И совсем иначе шли события для растения, находящегося «под напряжением» — лук оставался прямым, перья его имели более темную, больше хлорофилла, окраску.
Чтобы снять все сомнения, полнее убедиться в живительном воздействии электричества, экспериментаторы поменяли подключение тока. И все пошло наоборот: увядший лук ожил, а благополучно развивавшийся росток стал увядать.
«Признаться, — рассказывал корреспонденту „Правды“ смоленский ученый, руководитель специальной лаборатории электрофизиологии кандидат сельскохозяйственных наук Анатолий Михайлович Гордеев, — мы и сами не ожидали такого скорого эффекта. Первый успех окрылил нас. Мы стали совершенствовать методику…»
В клиностатах испытывали лук, чеснок, горох, гладиолусы и многие другие виды растений. Арабидопсис зацвел и даже дал плоды. Его ростки под током достигали почти вдвое большей высоты, чем в естественных условиях. Как электричество влияет на внутренние процессы роста и ориентирования растений, пока все же не очень ясно. Нужны более тщательные, более продолжительные исследования. Но несомненно, что электрический ток оказывает влияние на распределение в органах растения фитогормонов, веществ, управляющих процессами роста и развития.
Электрические грядки? Электрокультурой, стимулированием роста растений с помощью электрического тока занимались еще в конце прошлого века. И порой на электрических грядках урожаи получались заметно весомее, чем на грядках обычных. Кто знает, возможно, в будущем ток станет в руках земледельца рычагом повышения урожайности. Или, скажем, средством борьбы с полеганием злаков?
Это — земная сторона дела. Космическая же в том, что ток дает растениям в невесомости как бы точку опоры, словно бы гравитационный костыль, эрзац тяготения. И уж совсем любопытно, что подсказку, как вести себя в мире без тяжести, как правильно строить программу своего развития, растения могут получить не только посредством тока. Направленный свет (луч лазера), поле электрического напряжения (при нулевом токе) и другие воздействия также могут помочь растениям, оказавшимся в сотнях и тысячах километров от родной Земли.
В сентябре 1987 года, в 30-летие первого, запущенного в СССР спутника Земли, в Брайтоне, Англия, состоялся 38-й конгресс Международной астронавтической федерации. В зале яблоку негде было упасть, когда на одном из первых семинаров были заслушаны доклады советских участников. Тема — новый космический комплекс «Мир» — «Квант», чрезвычайно расширивший возможности работы и исследований в космосе…
Космонавтика берет одну вершину за другой. Директор НАСА доктор Джон Флетчер сказал в интервью советскому журналисту: «Через сто лет о нашем времени будут говорить как о начале космической цивилизации… Возможно, в 2017 году будущий директор НАСА сообщит о рождении первого ребенка в космосе. Мечты? Но когда люди не мечтают, они гибнут…»
Мечты? Они подсказывают смелые проекты переделки ближайших к Земле планет.
Автоматические межпланетные аппараты — советские «Марсы» и американские «Маринеры» — позволили изучить рельеф Марса, заглянуть в древнюю историю Красной планеты. Видимо, когда-то на Марсе текли реки и была атмосфера, гораздо более плотная, чем сейчас. Академик Николай Николаевич Семенов в связи с этим высказал мысль о возможности сооружения на Марсе гигантских электролизных установок, с тем чтобы, разлагая воду, которой достаточно в марсианских полярных шапках (это смесь льда и твердой углекислоты), насытить кислородом и уплотнить марсианскую атмосферу. Давление у поверхности Марса в 100–200 раз ниже, чем на Земле: оно примерно такое же, как у нас на высоте 30 километров.
Так, возможно, удастся сделать Марс годным для заселения людьми и растениями. Так возникнет марсианское земледелие, которое, видимо, будет значительно отличаться от земного. Климат Марса суров: в полдень максимальная температура всего 15–25 градусов Цельсия, в полночь она падает до минус 50–65 градусов. И это на экваторе!
Другой не менее дерзкий замысел подобного же рода — засеять верхнюю атмосферу Венеры земными микроводорослями. Таково предложение советского географа Игоря Михайловича Забелина, позднее ту же мысль высказал Карл Саган. Водоросли начнут поглощать углекислоту, усваивая углерод и высвобождая кислород. Это, считается, уменьшит «парниковый эффект» и температура поверхности Венеры, около 500 градусов Цельсия, начнет снижаться. И за короткое время — столетия, даже десятилетия — Венера сможет превратиться в гостеприимную или хотя бы сносную для человека, захватившего с собой растения, планету.
Марсианские пашни, плантации-гиганты на Венере. А что, если и в самом деле удастся перенести сельскохозяйственные угодья с Земли на соседние планеты, сделав их перевалочными пунктами на магистральном пути в дальний космос? Заманчивые проекты!
Где взять энергию, эту в конечном итоге плату за все? В космосе энергии предостаточно. Не только обилие солнечного света. Как известно, Юпитер и другие большие планеты состоят преимущественно из водорода — лучшего экологически чистого горючего. Да к тому же еще запасы ядерного топлива у одного только Юпитера таковы, что их расселяющимся в Солнечной системе землянам, по оценкам, хватит на сотни миллионов лет!..
Мечты о яблонях на Марсе не столь уж и беспочвенны. «На пыльных тропинках далеких планет…» — так пелось в популярной песенке эпохи первых космических полетов — человек оставит не только свои следы, там непременно возникнут поселки и города, целые страны с интернациональным, как сейчас в Антарктиде, населением, с высокоразвитым космическим земледелием, со всем тем, что позволило бы землянам чувствовать там себя как дома, на Земле.
И тогда начнут сбываться пророческие слова Циолковского: «Человечество не останется вечно на Земле, но в погоне за светом и пространством сначала робко проникнет за пределы атмосферы, а затем завоюет себе все околосолнечное пространство».
Глава 1. Карусель жизни … 3
Глава 2. Сказ о зеленом головастике … 18
Глава 3. Физики в заповеднике … 38
Глава 4. Растения-динозавры? … 58
Глава 5. Завет Тимирязева … 77
Глава 6. И на поля выйдут роботы … 95
Глава 7. Сценарии урожая … 126
Глава 8. По примеру Полинга … 143
Глава 9. Подобно режиссеру фильма … 168
Глава 10. Бифштексы на грядке … 183
Глава 11. Свидание с клеткой … 198
Глава 12. Памирский феномен … 216
Глава 13. Фитодром … 247
Глава 14. На пыльных тропинках далеких планет … 270
Ю. Чирков окончил Московский инженерно-физический институт по специальности «теоретическая ядерная физика». Сейчас он старший научный сотрудник Института электрохимии АН СССР, доктор химических наук, автор около 150 научных работ. В течение многих лет занимается популяризацией научных знаний — печатался в «Правде», «Известиях», журналах «Наука и жизнь», «Знание — сила». Им написаны книги: «Фотосинтез: два века спустя», «Любимое дитя электрохимии», «Стеклянные листья». В серии «Эврика» вышли его книги «Занимательн