235 производится быстрыми нейтронами. Эти нейтроны, как уже говорилось, слабо поглощаются ядрами урана235.
Наконец, оказалось возможным использовать и медленные нейтроны в реакторе с восстановлением горючего. Легче всего это сделать, применяя для цепного процесса уран233. Его ядра сравнительно слабо поглощают (без деления) тепловые нейтроны. Выходящие из активной зоны реактора нейтроны поглощаются в наружной оболочке, состоящей из тория232, где и образуется уран233. Расчеты показывают, что в оболочке такого реактора можно получить «свежего» урана233 не меньше, чем его «выгорает» в центральной части.
Таким образом, размножающие реакторы могут быть осуществлены на быстрых и медленных нейтронах.
Процессы в размножающем реакторе очень чувствительны к различным примесям, загрязняющим уран или замедлитель. Увеличение примесей, естественно, приводит к уменьшению выхода искусственного горючего, так как в них поглощается часть нейтронов. Такими примесями являются «осколки» деления ядер расщепляющихся материалов. Накопление «осколков» приводит к все ухудшающейся эффективности реактора. Нужна частая замена материалов, находящихся в центральной части реактора, и очистка урана от накопившихся «осколков», представляющих собой ядра различных элементов.
Как мы увидим позже, возможно осуществление реакторов, позволяющих непрерывное частичное обновление ядерного горючего. Бывшее в работе горючее проходит стадию химической очистки и возвращается обратно.
Работа ядерного реактора. В условиях постоянной работы ядерного реактора коэффициент размножения должен быть равен единице. Иначе говоря, реактор должен быть в критическом состоянии. Однако он не может находиться долго в таком режиме, когда его размеры точно критические. Существует ряд явлений, которые приводят к самопроизвольному уменьшению коэффициента размножения. Поэтому надо иметь возможность постепенно увеличивать этот коэффициент, или, как принято говорить, реактор должен обладать некоторым запасом реактивности.
Прежде всего в процессе работы происходит постепенное уменьшение содержания расщепляющегося вещества. В том случае, когда размеры системы остаются постоянными, величина коэффициента K становится меньше единицы и цепной процесс затухает. Для поддержания процесса нужно увеличить реактивность ядерного реактора.
Кроме того, при работе реактора происходит накопление «осколков» продуктов деления ядер. Это приводит к отравлению реактора примесями, очень жадно поглощающими нейтроны. Бесполезная потеря нейтронов вызывает уменьшение коэффициента размножения K, то есть опять-таки снижается реактивность системы.
Значительное влияние на протекание цепного процесса оказывает температура реактора. Если при запуске холодный реактор был в критическом состоянии, то при работе в нагретом реакторе обычно уменьшается реактивность. Это объясняется тем, что делящиеся материалы и замедлители при нагревании расширяются, плотность их уменьшается, а это приводит к увеличению среднего расстояния между ядрами. Следовательно, нейтроны уже реже встречаются с ядрами, реже производят деления и менее эффективно замедляются. Кроме того, увеличение температуры означает увеличение скорости молекул и медленных нейтронов, и, следовательно, если реактор работает на тепловых нейтронах, активность их уменьшается. Более быстрые нейтроны с меньшей вероятностью производят деление ядер расщепляющегося материала и значительно чаще поглощаются ядрами урана238. Таким образом, повышение температуры тоже приводит к уменьшению реактивности. Для того чтобы ядерный реактор продолжал свою работу и при высокой температуре, надо увеличить его эффективные размеры.
Рассмотрим в качестве примера работу гетерогенного реактора на медленных нейтронах, выполненного в виде алюминиевого бака, наполненного тяжелой водой, в которую опущены урановые стержни. Цепной процесс управляется регулирующим кадмиевым стержнем. Если мы поднимем регулирующий стержень, то поглощаемое им число нейтронов уменьшится: величина θ, которая входит одним из множителей в выражение для коэффициента размножения, увеличивается, а следовательно, увеличивается реактивность котла. Если регулирующий стержень останется на уровне, при котором коэффициент K больше единицы, то очевидно, что каждое деление ядра урана235 будет вызывать в среднем больше чем одно деление других ядер. Поток нейтронов в реакторе, а вместе с ним и выделение энергии возрастет, мощность котла увеличится.
Мощность котла, или количество энергии, выделяющейся в одну секунду, можно определять, измеряя поток нейтронов, так как их количество определяет число ядерных реакций, в которых освобождается энергия. Чем больше поток нейтронов, тем выше уровень мощности котла. Во всех реакторах предусмотрено измерение потока нейтронов. Это осуществляется с помощью специального прибора — ионизационной камеры, помещенной вблизи активной зоны.
Для регистрации медленных нейтронов применяются ионизационные камеры, наполненные газообразным соединением бора (BF3). Поглощение нейтрона бором приводит к ядерной реакции, сопровождающейся вылетом быстрой альфа-частицы. При своем движении в камере альфа-частица производит ионизацию молекул газа. На электроды ионизационной камеры приходит электрический заряд. При измерении очень интенсивных потоков медленных нейтронов, возникающих во время работы ядерных реакторов, используют менее чувствительные камеры, электроды которых покрыты слоем карбида бора.
Таким образом, нейтрон, проходящий сквозь камеру, вызывает небольшой импульс электрического тока. Чем больше поток нейтронов, тем больший ток протекает в камере. Измерительный прибор дает нам значение потока нейтронов или относительную величину мощности уранового котла.
Как показывают расчеты, при коэффициенте размножения 1,005 поток нейтронов и соответственно мощность реактора увеличиваются за 10 секунд примерно в 2,7 раза.
В любом куске урана, а следовательно, и в урановом котле, независимо от того, протекает цепной процесс или нет, непрерывно выделяется энергия. Это происходит за счет самопроизвольного деления. Учитывая, что в 1 грамме урана за один час происходит в среднем 23 деления, можно легко подсчитать: если в ядерный реактор загружено около 1 тонны природного урана, то начальная мощность его примерно будет 7∙10-14 киловатт. Это, конечно, очень маленькая мощность, но ее вполне достаточно для развития цепного процесса. При выбранном нами коэффициенте размножения K=1,005 через 10 секунд эта мощность увеличится в 2,7 раза, через 20 секунд — в 7,3 раза и т. д.
Подсчитанное таким путем повышение мощности котла во время пускового периода можно представить в виде табл. 1.
Мощность реактора, как видно из таблицы, возрастает медленно за первые 5 минут. Однако в последующие 1,5 минуты скорость значительно увеличивается; за промежуток времени от 6 до 6,5 минуты мощность котла возрастает от 91 до 1750 киловатт, что очень опасно. При недостаточном охлаждении температура тяжелой воды, а следовательно, и давление паров может достигнуть весьма больших значений. В лучшем случае разорвется алюминиевый бак и вода выльется; при отсутствии замедлителя цепной процесс прекратится.
Если провести измерение фактической зависимости мощности котла от времени, то легко убедиться, что приведенные расчеты не совпадают с результатами измерений.
По прошествии некоторого времени вследствие повышения мощности температура котла возрастет, коэффициент размножения уменьшится и поэтому мощность будет увеличиваться значительно медленнее, чем это следует из таблицы. При некоторой температуре коэффициент размножения может стать даже равным единице. Эта температура соответствует определенной мощности ядерного реактора, которая является максимальной для данного положения регулирующего стержня.
Возрастание температуры вследствие большой теплоемкости реактора должно происходить медленнее, чем изменение коэффициента размножения. Поэтому, после того как величина K станет равна единице, температура реактора может еще повышаться. Это приводит к дальнейшему уменьшению K и, следовательно, к падению мощности котла. Уменьшение выделяемого тепла в свою очередь вызовет охлаждение реактора и создаст условия для развития цепного процесса. Таким образом, благодаря своеобразной тепловой инерции происходит колебание мощности ядерного реактора (рис. 21). Размах этих колебаний постепенно убывает, пока не устанавливается мощность, соответствующая температуре реактора, при которой коэффициент размножения становится равным единице. Если мы хотим получить от реактора большую мощность, необходимо выдвинуть часть кадмиевого стержня из реактора. Произойдет дальнейший рост температуры, и мощность реактора после ряда колебаний установится на более высоком уровне.
Может случиться, что при полном удалении регулирующего стержня рост температуры приведет к такому уменьшению коэффициента размножения нейтронов, что мощность котла не сможет превысить некоторого вполне безопасного значения. Такой реактор очень удобен в обращении, так как нет опасности чрезмерного развития цепного процесса, приводящего к аварии.
Если, несмотря на зависимость коэффициента размножения от температуры, реактор все же может выйти из управления, то его регулировка должна быть полностью автоматизирована. При ручном управлении существует опасность, что быстрое развитие цепного процесса может привести к аварии раньше, чем обслуживающий персонал успеет произвести необходимые операции.
Автоматическое управление может производиться с помощью уже описанной ионизационной камеры (рис. 22). После того как котел достиг заданной мощности (кривая А—B на рис. 21), включают автоматическое управление. При некотором повышении мощности нейтронный поток, пронизывающий ионизационную камеру, создает там электрический ток, который, будучи усилен с помощью радиотехнических устройств, притягивает якорь электромагнитного реле. Якорь реле включает электрический мотор механизма, опускающего регулирующий стержень. Поглощение нейтронов стержнем приводит к уменьшению коэффициента размножения. Мощность котла, а следовательно, и нейтронный поток постепеннно уменьшаются. Этот процесс описывается отрезком кривой