Ядерные реакторы — страница 18 из 35


Рис. 40. Реактор STR

В США построены также гомогенные реакторы типа «водяной кипятильник». Один из таких реакторов (НУРО) приведен на рис. 41. Он предназначен для физических исследований, и его мощность не больше 6 киловатт. В сфере из нержавеющей стали помещен раствор урановой соли на обычной воде. В растворе содержится 870 граммов урана235 и 5500 граммов урана238. Цепной процесс начинается при 810 граммах урана235. В качестве отражателя применяется окись бериллия и графит. Защита от излучения изготовлена из свинца и бетона. Регулировка осуществляется с помощью кадмиевых стержней.


Рис. 41. Схема реактора НУРО:
1 — сфера из нержавеющей стали; 2 — отражатель из окиси бериллия; 3 — графитовый отражатель; 4 — охлаждающий змеевик; 5 — слой свинца 100 миллиметров; 6 — бетон 1,5 метра; 7 — регулирующие стержни

Несомненный интерес представляет собой американский реактор EBR — экспериментальный размножающий реактор. Он построен в штате Айдахо (Арко) на станции по испытанию реакторов. Общий вид реактора приведен на рис. 42. Реактор работает на быстрых нейтронах. Активная зона реактора имеет размер футбольного мяча и состоит из чистого урана235. Эта зона окружена толстым слоем естественного урана, который поглощает нейтроны, выходящие из активной зоны. Благодаря этому во внешнем слое образуется новое ядерное горючее — плутоний239. Отвод тепла осуществляется с помощью натриево-калиевого сплава. Жидкий сплав обтекает сначала зону воспроизводства ядерного горючего из естественного урана, а затем попадает в центральную активную зону. Мощность реактора может быть доведена до 1400 киловатт.


Рис. 42. Экспериментальный размножающий реактор EBR

Исследования, проведенные на этом реакторе, показали, что коэффициент воспроизводства на экспериментальном размножающем реакторе (EBR) еще недостаточно высок и приблизительно равен единице, то есть на каждое разделившееся ядро урана235 в среднем получается одно ядро плутония239. Опыты показали, что, если улучшить конструкцию зоны, заполненной естественным ураном, так, чтобы уменьшилась бесполезная утечка нейтронов, коэффициент воспроизводства может вырасти до 1,3. В этом случае размножающий реактор уже дает возможность накапливать запасы ядерного горючего для работы других реакторов.

В Англии работают несколько реакторов, применяемых для получения радиоактивных изотопов и для физических исследований. По своей конструкции они мало отличаются от уже описанных выше.

Один из самых старых английских реакторов — реактор BEPO (рис. 43) пущен в Харуэлле в 1948 году.


Рис. 43. Английский реактор BEPO

В нем используются тепловые нейтроны и в качестве замедлителя применяется графит. Реактор представляет собой графитовый куб со стороною 8,5 метра. Активная зона расположена в центральной части куба и выполнена в виде цилиндра диаметром и длиной 6 метров; 900 каналов активной зоны заполнены блоками из природного урана. Всего урана в реактор загружено около 40 тонн. Вес замедлителя (графита) составляет 850 тонн. Отвод тепла производится воздухом четырьмя компрессорами общей производительностью 5400 кубометров в минуту. Регулировка цепного процесса производится стальными трубами, заполненными бором. Мощность реактора 4000 киловатт.

В 1956 году вступил в строй реактор типа «Дидо», предназначенный для проведения физических экспериментов (рис. 44).


Рис. 44. Английский реактор типа «Дидо»:
1 — алюминиевый бак для тяжелой воды; 2 — уровень тяжелой воды; 3 — тепловыделяющий элемент; 4 — биологическая защита; 5 — графитовый отражатель; 6 — стальной сосуд реактора

Замедлителем и теплоносителем в реакторе является тяжелая вода, горючим — обогащенный уран. Всего урана — около 6 килограммов, в котором содержится 2,5 килограмма урана235. Активная зона реактора имеет форму цилиндра высотой 60 и диаметром 86 сантиметров. Она собрана в виде решетки из пластинчатых элементов, заполненных сплавом урана с алюминием. Эта решетка расположена в центре алюминиевого бака высотой и диаметром 2 метра. Графитовый отражатель имеет толщину 60 сантиметров. Весь реактор помещен в стальной кожух, наполненный гелием. Мощность реактора 10 тысяч киловатт.

Один из французских реакторов — реактор, построенный Жолио-Кюри, будет описан ниже. В конце 1952 года во Франции (Сакле) был построен второй французский реактор Сирано (рис. 45).


Рис. 45. Французский реактор Сирано:
1 — установка для рекомбинации тяжелой воды; 2 — съемные бетонные плиты; 3 — центральная труба; 4 — металлическая конструкция, поддерживающая бак; 5 — бак с тяжелой водой; 6 — стержни с топливом в охлаждающем канале; 7 — каналы для облучаемых образцов; 8 — вентиляционный трубопровод; 9 — графитовый отражатель; 10 — промежуточная защита; 11 — тепловая колонна для выпуска тепловых нейтронов; 12 — защита из металлических плит; 13 — предохранительный клапан; 14 — чугунная защита; 15 — блок, 16 — трубчатый блок для подвески топливных элементов; 17 — бетонная защита

Реактор — гетерогенный, с замедлением на тяжелой воде. Активная зона представляет собой тонкостенный алюминиевый бак диаметром 2 и высотой 2,5 метра. Внутрь бака опущено 136 стержней из природного урана общим весом 3 тонны. В бак залито около 6 кубометров тяжелой воды. Графитовый отражатель имеет вес 100 тонн. Охлаждение производится азотом под давлением 10 атмосфер. Мощность реактора 1,5–2 тысячи киловатт.

Несколько реакторов, предназначенных для исследовательских целей, имеются также в ряде других стран.

ГЛАВА 5.ЯДЕРНАЯ ЭНЕРГЕТИКА


Источники энергии. Энергетика в значительной степени определяет лицо века.

По характеру используемой энергии XIX век называют веком пара, а XX — веком электричества. Но энергия пара, которую мы затем превращаем в энергию движения, — это в конечном счете энергия каменного угля, нефти, газа, сгорающих в топке парового котла. Электрическая энергия — это опять-таки энергия пара или энергия падающей воды. Ни пар, ни электричество не являются новыми источниками энергии. И сейчас используется энергия горючих веществ, рек и ветра, то есть в конечном счете солнечная энергия.

В тяжелом труде обеспечивает человечество свою потребность в энергии. Так, например, в 1941 году было добыто больше 2,5 миллиарда тонн горючих ископаемых (табл. 2). А при использовании ядерного горючего для получения той же энергии было бы вполне достаточно одной тысячи тонн урана или тория.



Запасы урана и тория на земле не так уж малы. Эти элементы содержатся в различных горных породах и минералах. Крупные месторождения богатых ураном руд находятся в Бельгийском Конго, в Канаде (Медвежье озеро) и других местах. Много урановых руд содержат недра Советского Союза и стран народной демократии. Сейчас уран и торий добываются только из сравнительно богатых руд, с содержанием урана или тория от 100 граммов до 100 килограммов на тонну породы. Это — урановые и ториевые руды, монациты, карнаатиты и горючие сланцы.

Если учесть мировые запасы урана и тория только в этих сравнительно богатых рудах и заменить во всех энергетических установках химическое горючее на ядерное, то даже при быстрорастущей потребности в энергии ядерного горючего хватит на несколько тысяч лет. Но, безусловно, недалеко то время, когда будет разработана технология обогащения таких бедных ураном и торием пород, как гематит, гранит, различные базальты, пески и известняки. Даже в морской воде есть уран. Правда, его содержание там ничтожно, всего около миллиграмма на один кубометр воды. Однако в будущем, если не будут открыты другие виды ядерного горючего, по всей вероятности, найдут способы извлечения урана и из морской воды.

Запасы обычных горючих ископаемых не очень велики. Эти вещества, представляющие собой остатки древнего растительного мира, в которых в течение миллионов лет накапливалась солнечная энергия, практически не возобновляются. Если не будут найдены какие-нибудь новые, очень богатые месторождения, то запасов угля и нефти, по всей вероятности, хватит не больше чем на двести — триста лет.

Овладев атомной энергией, человечество получило совершенно новый богатейший источник энергии.


Большие трудности на великом пути. Основная энергия, получающаяся при делении ядер, — это энергия движения очень быстрых «осколков» и нейтронов. Температура вещества определяется скоростью движения молекул и атомов: чем больше скорость, тем выше температура. Подсчет показывает, что «осколки» ядер при делении разлетаются со скоростями, соответствующими температуре в несколько миллиардов градусов. Поэтому как будто бы нет особого предела для достижения сверхвысоких температур в процессе деления урана.

Однако очень высокая температура, порядка нескольких миллионов градусов, может быть получена только при атомном взрыве, когда очень большое число ядер урана делится за весьма короткий промежуток времени. При управляемом процессе такой температуры получить нельзя. Она ограничивается прежде всего теплостойкостью материалов, из которых построен ядерный реактор. Кроме того, мы уже знаем, что реактивность установки с повышением температуры обычно падает. Поэтому в ядерном реакторе на природном уране, где запас реактивности мал, нельзя получить высоких температур. При некоторой, сравнительно небольшой температуре коэффициент размножения становится равным единице и мощность реактора не достигает желаемой величины. Использование же тепловой энергии при низких температурах невыгодно: коэффициент полезного действия паросиловой установки при этом очень мал.