Ядерные реакторы — страница 21 из 35

235 с каким-либо другим веществом (разбавителем) устраняет ряд трудностей, возникающих при работе ядерного реактора. Так как энергия деления урана переходит в тепло во всей массе ядерного горючего, то устраняются потери, которые сопровождают передачу тепла постороннему теплоносителю. Горючая смесь, проходя по трубам теплообменника (парового котла), отдает это тепло вторичному теплоносителю, например воде или пару.

Цепной процесс может осуществляться только в шаровой камере, так как только в ней ядерное горючее имеет вес, близкий к критическому (рис. 51). Для того чтобы довести коэффициент размножения до значений, превышающих единицу, надо уменьшить выход нейтронов через шаровую поверхность. Поэтому активную зону реактора окружают слоем отражателя нейтронов. Регулировку мощности реактора можно производить, уменьшая или увеличивая выход нейтронов из шаровой камеры передвижением некоторой части отражателя нейтронов. Тем самым мы будем изменять коэффициент размножения.


Рис. 51. Схема гомогенного ядерного реактора с жидким ядерным горючим. Жидкая горючая смесь циркулирует между реактором и теплообменником (паровым котлом). Цепной процесс идет только в шаровой камере, где горючая смесь разогревается до высокой температуры. В таком реакторе чрезвычайно облегчается непрерывная замена части ядерного горючего

Применение в качестве теплоносителя жидкой горючей смеси чрезвычайно облегчает ее замену и удаление из нее продуктов деления во время работы реактора. Можно время от времени часть ядерного горючего отбирать и направлять на обрабатывающие химические и металлургические заводы для отделения от него «осколков». Очищенное ядерное горючее с добавлением некоторого количества свежей смеси в расплавленном состоянии опять направляют в работающий ядерный реактор.

Как было указано, управление цепным процессом может производиться только за счет запаздывающих нейтронов, которые вылетают из «осколков» ядер через 60–80 секунд после деления. Если применять в качестве теплоносителя циркулирующее ядерное горючее, то часть запаздывающих нейтронов будет выделяться уже вне рабочего объема реактора; доля запаздывающих нейтронов, участвующих в цепном процессе, таким образом, уменьшается, а это затрудняет управление ядерным реактором. Однако если объем труб, насосов и теплообменника мал по сравнению с шаровой камерой, то доля запаздывающих нейтронов, выбрасываемых «осколками» вне активной зоны реактора, будет также невелика.

Запаздывающие нейтроны, выделяющиеся в теплообменнике, производят ядерные реакции, а следовательно, вызывают радиоактивность уже вторичного теплоносителя. Большая интенсивность радиоактивных излучений вторичного теплоносителя может иногда вызвать необходимость установки второго теплообменника. Теплоноситель, нагревающийся во втором теплообменнике, уже не будет радиоактивным.

Подобным же образом может быть построен гетерогенный ядерный реактор на медленных нейтронах (рис. 52). Ядерное горючее, которым является природный или обогащенный легким изотопом уран, в расплавленном виде пропускают через каналы твердого замедлителя. Тем самым в активной зоне реактора создаются условия, необходимые для осуществления цепного процесса.


Рис. 52. Схема гетерогенного ядерного реактора на жидком ядерном горючем. Ядерное горючее в расплавленном виде проходит через каналы твердого замедлителя (графит). Здесь создаются условия для возникновения цепного процесса, и горючая смесь разогревается до высокой температуры

Управление процессом производится с помощью тугоплавких стальных стержней, содержащих бор и жадно поглощающих медленные нейтроны.

Жидкая горючая смесь, содержащая радиоактивные «осколки» деления, требует дополнительных мер защиты обслуживающего персонала от излучений. Окружать защитным слоем в этом случае надо не только сам ядерный реактор, но также трубопроводы с теплоносителем, насосы и первичные теплообменники.

В качестве теплоносителя могут быть использованы и газы. Проходя через реактор, они нагреваются и, имея большие давления, могут приводить во вращение турбины или осуществлять реактивное движение. Горячие газы можно пропускать через трубы парового котла и образующийся там пар высокого давления направлять на лопатки паровой турбины.

Тепловая энергия ядерного реактора с газовым теплоносителем может быть применена для отопления зданий. Таким образом частично был использован уже упомянутый в предыдущей главе английский реактор BEPO.

Этот реактор имеет мощность 4 тысячи киловатт и используется как мощный источник нейтронов для физических исследований и производства радиоактивных изотопов. Замедлителем в нем служат 850 тонн графита, а ядерным горючим — 40 тонн природного урана. Общий вид этого реактора и схема использования его тепла для отопления зданий приведены на рис. 53.


Рис. 53. Схема использования тепла ядерного реактора для отопления зданий:
1 — воздушный фильтр; 2 — холодный воздух; 3 — реактор; 4 — горячий воздух; 5 — заслонки первого теплообменника; 6 — первый теплообменник; 7 — насосы; 8 — вентиль; 9 — второй теплообменник; 10 — схема отопления здания; 11 — радиаторы

Для охлаждения реактора 3 через каналы, пронизывающие графитовый замедлитель, продувается воздух в количестве 5400 кубических метров в минуту. Воздух нагревается до температуры 100 градусов и направляется в теплообменник 6. Горячая вода из теплообменника при 70 градусах проходит через второй теплообменник 9, представляющий собой часть схемы отопления здания 10. Эта схема состоит из системы труб и радиаторов 11, где циркулирует горячая вода. В установке используется только 25 процентов всей энергии ядерного реактора, то есть 1000 киловатт. Показанные в схеме отопления заслонки первого теплообменника 5 служат для переключения горячего газа. Когда открыты нижние заслонки, горячий газ нагревает воду отопительной системы. Часть горячего газа можно пустить прямо в вытяжную трубу, открыв верхние заслонки.


Использование ядерного горючего для получения электрической энергии. Если ядерный реактор дает тепловую энергию, то нельзя ли это тепло известными нам способами превратить в механическую и электрическую энергию?

Одна из возможных схем превращения атомной энергии в электрическую приведена на рис. 54.


Рис. 54. Принципиальная схема атомной электростанции, работающей на природном уране

Расплавленный висмут (температура плавления 271 градус), играющий роль теплоносителя, пропускают через ядерный реактор, где он нагревается до 600 градусов. Затем горячий металл, проходя через паровой котел, отдает свое тепло на парообразование и возвращается в реактор при температуре 275 градусов. Выходящий из парового котла пар, имеющий температуру до 260 градусов и давление 40 атмосфер, поступает в паровую турбину, где и приводит в движение вал, связанный с электрическим генератором. При таком давлении и температуре пара коэффициент полезного действия установки равен 20–25 процентам. Отработанный пар пропускают через холодильник, где он конденсируется и перекачивается насосом обратно в паровой котел. Вода, охлаждающая пар, нагревается и может быть применена для отопления жилых или производственных помещений.

В схеме применяется реактор, работающий на медленных нейтронах, и используется уран с содержанием ядерного горючего около одного процента. Замедлителем служит графит. Во время пускового периода реактор работает на природном уране, содержащем всего 0,7 процента урана235. При таких условиях урановые тепловыделяющие элементы реактора приходится довольно часто заменять. Но в этих блоках накапливается плутоний, который после отделения и химической очистки добавляют в освобожденные от «осколков» урановые блоки. Содержание ядерного горючего (урана235 и плутония239) в этих блоках увеличивается, и постепенно среднее содержание расщепляющегося материала в урановом котле доводится до одного процента.

По истечении некоторого времени в реакторе устанавливается такой режим, при котором только частично используется природный уран, добавляемый в котел в виде «свежих» урановых блоков. Основное же количество урана поступает в реактор с химического и металлургического заводов после обработки и имеет повышенное содержание ядерного горючего. Но в этой установке нет полного восстановления ядерного горючего. Около 50 процентов урана238 не используется и поступает на склад. Этот уран может быть использован в размножающем реакторе.

Более совершенной является схема атомной электростанции, показанная на рис. 55. В этой схеме использованы два размножающих реактора, работающие на быстрых нейтронах. Теплоносителем здесь служит сплав плутония с висмутом. Расплавленное ядерное горючее из первого реактора перекачивается в один из первичных теплообменников IA и попадает во второй реактор. Здесь смесь вновь участвует в цепной реакции, нагревается, отдает свое тепло в другом теплообменнике и попадает обратно в центральную часть первого реактора.


Рис. 55. Схема использования размножающих (бридерных) реакторов для получения электрической энергии

Вторичным теплоносителем является газ гелий. Он проходит через теплообменники и и нагревается до температуры 650 градусов. Свое тепло гелий отдает целому ряду теплообменников IIА, IIВ, IIС и IID и затем возвращается обратно. Один из вторичных теплообменников IIС является паровым котлом. Вся получаемая им тепловая энергия расходуется на образование большого количества пара с температурой 240 градусов. Однако для эффективного использования пара в турбине нужно давление и температуру его повысить. Для этого пар поступает в пароперегреватель, которым является теплообменник