Ядерные реакторы — страница 23 из 35


Рис. 61. Главное здание советской атомной электростанции

Посмотрим на разрез главного здания атомной электростанции (рис. 62).


Рис. 62. Разрез главного здания атомной электростанции:
1 — ядерный реактор; 2 — насосы первичного контура; 3 — теплообменники; 4 — компенсаторы объема первичного контура; 5 — подъемный кран: 6 — электродвигатель насосов первичного контура; 7 — пульт управления атомной электростанцией; 8 — щит, регистрирующий радиоактивность в помещениях

В центральном зале главного здания помещается «сердце» атомной электростанции — ядерный реактор 1. Его верхняя часть находится на уровне пола, что облегчает замену рабочих каналов. В этом зале находится чугунная кабина с тремя толстыми стеклянными иллюминаторами, из которой машинист управляет движением подъемного крана 5 при выемке рабочего канала из реактора. Отработанный канал переносится тем же краном в хранилище, где он будет выдерживаться до тех пор, пока его радиоактивность не станет сравнительно безопасной. Стены кабины защищают машиниста от вредного излучения.

К главному залу слева примыкает помещение с компенсаторами объема 4. Справа находятся помещения, где размещена основная часть оборудования станции. В самом нижнем этаже расположены насосы первичного контура 2. Из рисунка видно, что они отделены от электродвигателя 6 стеной и помещаются в отдельной кабине. Такое устройство облегчает обслуживание электродвигателя и защищает обслуживающий персонал от действия лучей радиоактивной воды.

Теплообменники 3 расположены в крайнем правом помещении второго этажа. В верхнем этаже расположен главный пульт и щит управления атомной электростанцией 7. Кроме того, на особый щит 8 выведены сигналы, предупреждающие о возникновении опасной радиоактивности в различных помещениях станции.

Автоматизация управления всеми элементами процесса на первой атомной электростанции Советского Союза доведена до высокого уровня. На пульте управления станцией оператор может по приборам следить за работой всех агрегатов электростанции (рис. 63). Перед глазами дежурного инженера находятся измерители мощности и положения регулирующих стержней, приборы, отмечающие температуру, давление и количество воды, протекающей в каждом из 128 рабочих каналов реактора. Здесь же оператор получает сведения о давлении пара, идущего в турбину, о работе всех насосов и парогенераторов.


Рис. 63. Пульт управления первой советской атомной электростанции

Наблюдая за показаниями соответствующих приборов, инженер, находясь у пульта, может устранить различные неполадки. Но даже в том случае, если оператор не примет необходимых мер, авария не произойдет, так как при нарушении режима в работе аварийный стержень сам опустится в реактор и остановит цепной процесс, то есть выделение атомной энергии.

Работа атомной электростанции совершенно безопасна. На особом пульте находятся дозиметры — приборы, сигнализирующие о наличии опасных радиоактивных излучений в различных помещениях электростанции. Оператор всегда видит, в каком помещении излучение превышает норму. Кроме того, в этом помещении автоматически вспыхивает красная лампа и дается звуковой сигнал. Получив такое предупреждение, люди удаляются из зоны радиоактивного заражения. Подобные случаи бывают очень редко. Мощные вентиляторы удаляют радиоактивные пыль и газ из помещений электростанции через высокую дымовую трубу, где они и рассеиваются на большой высоте. Управление работой всей атомной электростанции производится с главного пульта двумя инженерами. У машин находится несколько механиков и электриков.

Питание всех агрегатов станции производится за счет электроэнергии, вырабатываемой ею же. Однако в случае аварии в электрической сети питания все механизмы и приборы автоматически переключаются на аккумуляторную батарею.

Электрическая энергия атомной электростанции подается на трансформаторную подстанцию, включенную в общее высоковольтное кольцо района.

Первая атомная электростанция СССР построена с целью накопления научного и инженерного опыта, необходимого для проектирования и строительства крупных атомных электростанций. Для этого при сооружении станции были предусмотрены различные устройства и приспособления, позволяющие физикам и техникам проводить необходимые исследования.

Используя опыт работы первой атомной электростанции, наши ученые и инженеры разрабатывают мощные энергетические установки. Пройдет немного лет, и в строй войдут атомные электростанции мощностью 400–600 тысяч киловатт.


Пути развития ядерной энергетики. Опыт работы промышленной атомной электростанции СССР мощностью 5 тысяч киловатт позволяет ученым произвести некоторую оценку ядерной энергетики ближайшего будущего.

Электроэнергия, вырабатываемая первой атомной электростанцией, пока еще дороже электроэнергии, даваемой крупными тепловыми станциями в СССР, но сравнима со стоимостью энергии тепловых электростанций той же мощности.

Высокая себестоимость электроэнергии объясняется в первую очередь малыми размерами станции, что вызывает повышенный расход урана235 на единицу мощности, и большими затратами на изготовление тепловыделяющих урановых элементов. Дорого стоит и дополнительное оборудование, повышающее надежность работы электростанции. Но опыт эксплуатации уже показал, что от многих приспособлений такого рода можно отказаться.

На Международной конференции в Женеве в 1955 году советскими учеными был представлен вариант атомной электростанции мощностью 100 тысяч киловатт. Эта станция будет оборудована двумя реакторами с тепловой мощностью по 200 тысяч киловатт каждый.

Увеличение размеров реактора позволяет снизить содержание урана235 в урановых блоках реактора. Расчеты показывают, что такая станция требует до 200 тонн урана в год с содержанием 2,5 процента легкого изотопа, то есть в год такая станция будет расходовать всего 500 килограммов урана235[9]. Это обстоятельство, а также ряд усовершенствований, вводимых на новой станции, значительно удешевит стоимость киловатт-часа вырабатываемой электроэнергии. Она станет близкой к стоимости электроэнергии тепловой станции на высокосортном угле.

Сравнение количества оборудования, материалов и некоторых работ, необходимых для сооружения электростанций разных типов мощностью по 100 тысяч киловатт, приведенное в табл. 3, говорит в пользу атомных электростанций.



Таблица убедительно показывает, что материальные затраты на оборудование атомной электростанции значительно меньше, чем для угольной. Это объясняется прежде всего тем, что атомной станции не нужны большие топливные склады, сложные системы подачи топлива, углеразмольные мельницы, золоудаляющие и другие сооружения, характерные для угольных электростанций.

Атомная электростанция уже сейчас более экономична, чем тепловая, удаленная от месторождения угля или работающая на низкосортном топливе. Для того чтобы обеспечить атомную станцию мощностью 100 тысяч киловатт горючим на один год, требуется всего один рейс грузового самолета. Для угольной же станции той же мощности необходимо ежедневно подавать 20–30 вагонов угля.

Сравнение характеристик атомной и угольной электростанций мощностью по 100 тысяч киловатт указывает на рентабельность строительства электростанций, аналогичных первой промышленной атомной электростанции в СССР. Разработанный советскими учеными вариант мощной атомной электростанции имеет неоспоримое преимущество перед другими возможными вариантами, так как он основывается на опыте действующей электростанции.

Однако, как мы видели, тип реактора, избранный в атомной станции Академии наук, не является единственным. Разнообразие реакторов, которые могут быть применены для энергетических целей, весьма велико.

Так, например, если взять тот же гетерогенный реактор с замедлителем из графита, то в качестве теплоносителя может быть использована не только вода, но и различные газы и металлы. Если отводить тепло водой под высоким давлением, как это сделано в реакторе первой атомной электростанции СССР, то сравнительно низкая температура теплоносителя (260 градусов) не позволяет получить высокий коэффициент полезного действия турбогенератора. Это большой недостаток схемы подобного типа.

Для получения пара с температурой 375 градусов давление в первичном контуре придется поднять выше 225 атмосфер. При этом необходимо увеличить прочность конструкций рабочих каналов и реактора, а это потребует введения в активную зону дополнительного количества поглощающих нейтроны материалов (стали). Для осуществления устойчивой цепной реакции нужно будет увеличить содержание урана235 в тепловыделяющих элементах реактора. Увеличение стоимости ядерного горючего не будет компенсировано улучшением коэффициента полезного действия электростанции. Тем не менее, как это показано на примере работы первой атомной электростанции СССР и расчета советских ученых, строительство атомных электростанций на реакторах такого типа экономически вполне оправдывается.

При использовании газового охлаждения нет нужды создавать в каналах реактора очень большие давления. Но так как газ обладает очень малой теплоемкостью, то для отвода тепла нужно очень большое его количество продувать через реактор. Это вызывает значительные затраты энергии и является существенным недостатком газового охлаждения энергетических ядерных реакторов.

Примером может служить описанный раньше английский реактор ВЕРО, где для отвода тысяч киловатт тепловой мощности требуются воздуходувки, продувающие 5400 кубометров воздуха в минуту.

Охлаждение жидким металлом совмещает в себе достоинства газового и водяного охлаждения. Расплавленные металлы обладают высокой температурой кипения и поэтому позволяют избежать высоких давлений в первичном контуре реактора. Большая по сравнению с газами теплоемкость металла не вызывает необходимости прогонять через реактор большие массы теплоносителя. Одним из самых приемлемых теплоносителей такого типа является легкоплавкий металл натрий.