Ядерные реакторы — страница 27 из 35

1 — фильтр; 2 — графит; 3 — уран; 4 — защита

Атомное горючее состоит из 100 тонн естественного урана, содержащегося в 2700 тепловыделяющих стержнях. Замедлителем служит графит. Кроме электроэнергии, реактор будет вырабатывать плутоний — около 13 килограммов в год. Тепловая мощность реактора — 40 тысяч киловатт, а электрическая — 5 тысяч киловатт. Малый коэффициент полезного действия объясняется низкой температурой газового теплоносителя на выходе из реактора — всего около 220° C. Естественно, что реактор нельзя рассматривать как атомную электростанцию, поскольку ее мощность недостаточна, чтобы обеспечить потребление энергии циркуляционных газовых насосов (около 5,6 тысячи киловатт). Основное назначение этой станции состоит в том, чтобы приобрести технический опыт, на котором можно было бы разработать проект промышленной атомной электростанции. Проект такой станции разрабатывается французским комиссариатом по атомной энергии; ее предполагается построить в Маркуле. В каждом из двух реакторов этой атомной электростанции в качестве горючего используется 100 тонн естественного урана. Замедлителем служит графит, теплоносителем — углекислый газ. Проектная электрическая мощность атомной электростанции — 40 тысяч киловатт. Кроме электроэнергии, два реактора электростанции будут производить около 100 килограммов плутония в год. Пуск станции предполагается в 1957 году.

В Канаде, в 150 милях от Оттавы, намечено построить первую канадскую атомную электростанцию. Схема реактора электростанции (реактор NPD) приведена на рис. 78.


Рис. 78. Схема реактора NPD канадской атомной электростанции: 1 — мостовой кран; 2 — каналы для горючего; 3 — манипулятор; 4 — парогенератор; 5 — насос для тяжелой воды; 6 — реактор; 7 — бетонная защита

В качестве замедлителя и теплоносителя будет применена тяжелая вода под давлением. На территории, занимаемой станцией, будут размещены реактор с парогенератором и насосом, перерабатывающий ядерное горючее завод и турбогенераторы. Реактор и парогенераторы помешаются в бетонированном котловане. Отдельная зашита ставится между реактором и парогенератором. Активная зона реактора заключена в цилиндрический сосуд с полусферическим дном. Тяжелая вода используется в реакторе в двух контурах: в контуре теплоносителя и контуре замедлителя. Теплоноситель из реактора поступает в парогенераторы, где отдает свое тепло, образуя сухой насыщенный пар. Замедлитель проходит через специальный теплообменник, где он охлаждается обычной водой. В реакторе NPD не будет регулирующих стержней. Реактивность аппарата будет поддерживаться на определенном уровне с помощью изменения количества замедлителя в системе. Строительство атомной станции в Канаде должно быть завершено в 1958 году.

В Соединенных Штатах Америки впервые преобразование ядерной энергии в электрическую было произведено на уже описанном в предыдущей главе опытном размножающем реакторе EBR. Основной целью сооружения этого реактора было экспериментальное исследование принципов системы размножающего реактора на быстрых нейтронах. Поэтому не было обращено внимание на получение достаточно высокого коэффициента полезного действия установки. Этот коэффициент был равен приблизительно 17 процентам, и от реактора с тепловой мощностью 1400 киловатт получалось не больше 200 киловатт электрической энергии. Схема реактора EBR приведена на рис. 79.


Рис. 79. Схема реактора EBR:
1 — активная зона из делящегося материала; 2 — зона воспроизводства; 3 — электромагнитные насосы

Тепло от натриевого теплоносителя передается в теплообменнике вторичному, тоже натриевому, теплоносителю. Вторичный теплоноситель поступает в парогенератор, где образуется сухой пар при давлении 28 атмосфер. Циркуляция металла в первичном и вторичном контурах осуществляется с помощью специальных электромагнитных насосов. Общее расположение аппаратуры размножающего реактора EBR показано на схеме рис. 80.


Рис. 80. Расположение аппаратуры реактора EBR

Основываясь на опыте работы реактора EBR, американцы строят второй экспериментальный размножающий реактор — EBR-II тепловой мощностью 60 тысяч киловатт, который должен быть закончен в 1958 году. Как видно из рис. 81, весь реактор вместе с электромагнитным насосом первого контура, первичным теплообменником и хранилищем для тепловыделяющих элементов (на рисунке не показано) погружается в большой бак, наполненный жидким натрием.


Рис. 81. Схема реактора EBR-II:
1 — первичный теплообменник; 2 — нейтронная защита; 3 — активная зона; 4 — герметический бак с натрием; 5 — зона воспроизводства; 6 — регулирующий стержень; 7 — защита от гамма-излучения; 8 — объединенный униполярный генератор и электромагнитный насос

Ни при каких авариях уровень жидкого натрия не может падать ниже верхнего уровня активной зоны реактора. В случае аварии большая теплоемкость натрия, заполняющего бак, позволяет поглотить большое количество тепла и охладить реактор естественной конвекцией. В случае остановки реактора топливные тепловыделяющие элементы могут немедленно заменяться, так как во время перемещения из активной зоны реактора в хранилище они все время охлаждаются жидким натрием. Таким образом, гарантируется удаление значительного количества тепла, выделяющегося при радиоактивном распаде продуктов деления, содержащихся в заменяемом топливном элементе. Хотя промежуточный теплообменник и расположен очень близко к реактору, но благодаря наличию защиты от нейтронов вокруг реактора натрий во вторичном контуре не становится радиоактивным. Таким образом, единственной частью установки, требующей защиты, является сам бак с натрием. Предполагается, что реактор EBR-II будет объединен с установкой для металлургической обработки старых топливных элементов. Установлено, что 90 процентов продуктов деления выходят в шлак при расплавлении ядерного горючего. Поэтому когда старые топливные элементы будут освобождены от оболочки и расплавлены, то после удаления шлака в топливе останется всего 10 процентов примесей. Эти примеси при работе реактора на быстрых нейтронах не так вредны, поскольку они слабо поглощают быстрые нейтроны. Когда вместо выгоревшего делящегося материала будет добавлено соответствующее количество плутония, из полученной смеси можно изготовить новые топливные элементы для использования в реакторе.

Для электромагнитных насосов, перекачивающих жидкий натрий, необходим электрический ток огромной силы (до 250 000 ампер). Поэтому для реактора EBR-II разработан специальный агрегат, состоящий из особой конструкции генератора и непосредственно связанного с ним электромагнитного насоса постоянного тока, причем насос полностью погружен в натрий.

Интересный проект реактора с жидко-металлическим топливом (LMFR) был доложен делегацией США на Женевской конференции. Этот проект находится в настоящее время в стадии предварительного экспериментального и конструктивного изучения. В этом реакторе будет применяться в качестве ядерного горючего сплав висмута и урана в жидком состоянии. Схема реактора приведена на рис. 82.


Рис. 82. Схема реактора LMFR

Ядерный реактор состоит из активной зоны. Она включает графит в качестве замедлителя, сквозь который протекает сплав висмута с ураном233. Проходя через активную зону, жидкий сплав нагревается до температуры 550° C и отдает свое тепло в теплообменник вторичному натриевому теплоносителю. Натриевый теплоноситель, попадая в парогенератор, образует там сухой пар при давлении 88 атмосфер. Активную зону окружает зона воспроизводства, по которой протекает жидкий сплав висмута с торием. При поглощении торием нейтронов образуется опять уран233. Горячий ториево-висмутовый сплав отдает свое тепло через натриевый теплоноситель во втором теплообменнике парогенератору. Преимущества жидкого ядерного горючего обсуждались нами в предыдущей главе. Это прежде всего непрерывная очистка горючего и возможная замена его без остановки реактора. Однако на этом пути имеется еще много трудностей. Основные технические затруднения связаны с коррозией металлов, из которых состоят конструкции, соприкасающиеся с жидким радиоактивным горючим. Кроме того, многие из новых предлагаемых технических вариантов оборудования не проходили испытаний в большом масштабе. Поэтому авторы проекта считают, что реактор LMFR сможет быть пущен не ранее 1960 года.

Военно-морской флот США пополнился первой атомной подводной лодкой, получившей название «Наутилус» (рис. 83).


Рис. 83а. Американская подводная лодка «Наутилус»

Рис. 83б. Разрез «Наутилуса»:
1 — кубрики для команды; 2 — машинное отделение; 3 — реактор; 4 — боевая рубка; 5 — рубка управления; 6 — столовая для команды; 7 — аккумуляторная; 6 — кладовые; 9 — мостик; 10 — перископная; 11 — каюта командира; 12 — офицерская кают-компания; 13 — камбуз; 14 — кубрики для команды; 15 — торпедный отсек

Водоизмещение лодки 2700 тонн. Источником энергии служит ядерный реактор на тепловых нейтронах типа STR, уже описанный нами в предыдущей главе. В качестве замедлителя и первичного теплоносителя используется обычная вода под высоким давлением. Вода проходит последовательно через активную зону реактора и теплообменник. Вторичная вода, находящаяся в теплообменнике, превращается в пар, используемый для работы паровых турбин. Силовое оборудование подводной лодки размещено в двух отсеках. В одном отсеке установлены ядерный реактор и теплообменник. В машинном отделении находятся две паровые турбины, здесь же размещены турбогенераторы, снабжающие подводную лодку электроэнергией, и главный пульт управления механизмами машинного и реакторного отсеков. В случае аварии двигатель подводной лодки может работать от аккумуляторной батареи или от генератора, приводимого в движение дизелем. Безопасность команды при работе реактора обеспечивается специальной защитой. По рекламным сообщениям американской печати, эта защита якобы настолько эффективна, так снижает интенсивность излучения, что члены экипажа при непрерывном многолетнем плавании получат меньшую дозу излучения, чем они получают за свою жизнь в результате действия космических лучей и естественной радиоактивности земли. «Наутилус» снабжен специальными приборами, контролирующими радиоактивные излучения. Приборы реагируют на повреждение труб в теплообменнике, предупреждают о проникновении радиоактивного теплоносителя первичного контура в незащищенный паровой контур. Индикаторы радиоактивности могут обеспечить невозможность спуска радиоактивной воды во время стоянки в доке или других местах, где это создает опасность для людей.