Ядерные реакторы — страница 31 из 35

Все эти примеры дают лишь очень общее представление о возможностях метода меченых атомов. Трудно переоценить его значение. Самые сложные химические и биологические процессы с помощью метода меченых атомов постепенно раскрываются человеком. Этот метод сейчас применяется в разных областях науки и техники и позволяет глубже и полнее познать законы природы, облегчить труд миллионов людей, вовремя распознать опасное заболевание человека.


Что такое лучевая болезнь. Широкие исследования, проводимые в настоящее время в области ядерной физики и реакторостроения, а также применение различных искусственных и естественных радиоактивных веществ и отходов ядерного реактора в народном хозяйстве, связаны с привлечением большого количества людей — специалистов разных областей науки и техники.

При работе на реакторах и с радиоактивными веществами люди могут иногда при неправильно подобранной и малоэффективной защите подвергаться сильному воздействию различных излучений, которые приводят к заболеванию так называемой лучевой болезнью.

Опасность воздействия этих излучений особенно велика в связи с тем, что человек не испытывает неприятных ощущений в момент их действия. В этом отношении радиоактивные излучения значительно коварнее, например, тепловых, инфракрасных лучей или большинства удушливых газов, действие которых почти мгновенно ощущается человеком.

Это заставляет нас с большей внимательностью относиться к безобидным на первый взгляд радиоактивным препаратам или приборам, выделяющим различные излучения, с большей тщательностью изучать их действие на различные живые организмы.

Сейчас уже известно, что самое сильное биологическое действие ядерного излучения заключается в ионизации атомов и молекул веществ, входящих в состав живого организма.

Эта ионизация ведет к нарушению молекулярных связей и изменению структуры различных химических соединений.

Например, под влиянием ионизирующих ядерных излучений происходит расщепление воды. Продукты расщепления ее являются химически активными веществами и вступают в соединение с белковыми молекулами, что приводит к образованию новых химических соединений, необычных для данного организма. В результате этих реакций нарушается нормальный обмен веществ и происходит изменение клеток. При сильном облучении ввиду ионизирующей способности ядерных излучений может наступить гибель клеток отдельных органов и даже целого организма.

Биологическое действие зависит от характера излучения.

Различные виды ионизирующих излучений при взаимодействии с веществом вызывают неодинаковое число ионизаций. Большое значение имеет также энергия излучения — скорость частиц и длина волны гамма-кванта. Для обычных ядерных излучений можно принять, что на пути в один миллиметр в воздухе одна альфа-частица вызывает 6 тысяч пар ионов, одна бета-частица — 6 пар ионов, а десять гамма-квантов — одну пару ионов. Таким образом, наибольшим биологическим действием обладают альфа-частицы и наименьшим — гамма-лучи.

Однако мы уже знаем, что наибольшей проникающей способностью обладает гамма-излучение. Оно проникает через всю толщу организма и действует на все ткани и органы.

Лист писчей бумаги, полотняная ткань полностью поглощают альфа-излучение. Поверхностное облучение кожи человека альфа-частицами почти безвредно, так как излучение поглощается роговым слоем кожи. Альфа-излучение становится очень опасным только тогда, когда радиоактивный препарат попадает внутрь организма, в кровь и интенсивно воздействует непосредственно на ткани и клетки.

Бета-частица при наружном облучении непосредственно действует только на кожу и слизистые оболочки.

Радиоактивные вещества широко распространены в природе. Кроме того, живые организмы и клетки находятся под постоянным воздействием космического излучения. Однако многочисленные наблюдения показывают, что организм от этого излучения не только не страдает, но оно необходимо для его нормального существования.

Увеличенная доза[11] излучения плохо переносится живыми существами и растениями. Максимальная доза, переносимая совершенно здоровым человеком в течение длительного времени без вреда для здоровья, примерно в 60–100 раз превышает уровень естественной радиации и равняется 0,05 рентгена в день.

Ежедневное облучение более высокими дозами приводит к развитию лучевой болезни, а при внешнем облучении, например, только рук, возникают тяжелые поражения кожи, которые могут перейти в злокачественные образования (рак кожи).

При однократном облучении всего тела заметные изменения у здорового человека уже бывают при облучении свыше 50 рентгенами. Однако через некоторое время заболевание проходит бесследно. Доза в 100–200 рентген может вызвать тяжелое заболевание. И очень тяжелое заболевание вызывает облучение в 400 рентген. Доза в 600–700 рентген является очень опасной для жизни человека.

Степень заболевания зависит от размеров облученной поверхности тела. Облучение дозой в 600 рентген небольшого участка кожи вызывает ее покраснение, которое проходит довольно быстро. Облучение поверхности кожи в несколько десятков сантиметров действует уже сильнее. Появляется большая слабость, тошнота и головная боль, которые исчезают через сутки. Однократное облучение той же дозой трети поверхности тела вызывает тяжелое заболевание, а облучение половины — зачастую приводит к опасному для жизни человека заболеванию.

Степень заболевания зависит от общего состояния организма и состояния нервной системы. Люди уравновешенные обычно легче переносят воздействие излучения, чем люди с неустойчивой нервной системой.

Человек обычно наиболее устойчив к излучению в возрасте от 26 до 50 лет. У молодых и более пожилых чувствительность к излучению повышенная.

Первые симптомы лучевой болезни выражаются обычно в появлении слабости, повышенной утомляемости и головных болях. У больных появляется одышка при физической работе. Для начальной стадии болезни характерно некоторое изменение состава крови.

При более сильном облучении эти симптомы приобретают более тяжелый характер. Повышается утомляемость, снижается трудоспособность, заметно снижается память, возникают различные желудочные заболевания, наблюдается значительное понижение давления крови и изменяется ее состав в сторону уменьшения числа лейкоцитов и лимфоцитов, прогрессирует малокровие.

При хронической лучевой болезни заметно снижается сопротивляемость организма, его невосприимчивость к инфекциям. Это ведет к частым заболеваниям гриппом, ангиной и другими инфекционными болезнями.

Люди, страдающие лучевой болезнью, вызванной очень сильным облучением, являются тяжелобольными, требующими постельного режима. У этих больных ослабленный иммунитет к инфекциям, и они нередко погибают от случайных заболеваний, например от воспаления легких или общего заражения крови. У больных повышена температура, появляется сильное кровоизлияние, совершенно расстроена нервная система, появляется хроническое воспаление мозга.

Течение лучевой болезни у разных людей протекает по-разному. У некоторых людей даже сравнительно сильное переоблучение не вызывает серьезных заболеваний.

В нашей стране уделяется очень большое внимание лечению и профилактике лучевой болезни. Тяжелые заболевания возможны только при каких-либо значительных авариях. Однако и здесь врачам удается добиться выздоровления больного.

В атомных установках помещения для обслуживающего персонала отделяются от источников излучений толстыми защитными стенами. В этих помещениях установлены специальные приборы — дозиметры, которые позволяют обнаружить излучения даже небольшой интенсивности. Работники, находящиеся в особо опасных местах, имеют при себе индивидуальные дозиметры, регистрирующие степень облучения, которому они подвергаются в течение всего дня. Если кто-либо получил дозу облучения выше допустимой, он немедленно обследуется врачами, и в случае необходимости принимаются лечебные меры.

Периодическому медицинскому осмотру подвергается весь персонал. Люди, работающие с ионизирующими излучениями, получают бесплатное специальное питание и пользуются сокращенным рабочим днем.

ГЛАВА 7.О ТЕРМОЯДЕРНЫХ РЕАКЦИЯХ


Соединение легких ядер. Как известно, ядерную энергию можно получить как при делении ядер тяжелых, так и при соединении ядер легких элементов. Мы уже умеем получать и использовать энергию при делении ядер изотопа естественного урана — урана235 и ядер искусственных изотопов — урана233 и плутония239.

Физики еще раньше, чем была открыта реакция деления урана, знали, что при бомбардировке легких ядер быстрыми заряженными частицами происходят ядерные реакции, в которых выделяется очень большая энергия. Например, при бомбардировке лития ядрами водорода — протонами выделяется энергия, примерно в два с половиной раза большая, чем при делении урана, если отнести эту энергию к единице веса вещества, входящего в реакцию. Еще большая энергия получается при образовании ядер гелия из различных изотопов водорода.

Однако произвести соединение ядер не так легко. Ведь одноименно заряженные ядра с большой силой отталкиваются. Поэтому для того чтобы производить такие ядерные реакции, нужно ускорять заряженные частицы на специальных аппаратах-ускорителях. Но можно ли на ускорителях получать атомную энергию для практических целей? Оказывается, нет. Из огромного числа частиц лишь одна совершит ядерную реакцию, и энергии, выделенной при этом, недостаточно даже для того, чтобы компенсировать работу, затраченную на ускорение миллионов заряженных частиц, которые пройдут мимо атомных ядер. Таким путем нельзя получить выигрыш в энергии.

Очевидно, что для получения энергии при соединении легких ядер нужен процесс, который сам себя поддерживает. Оказалось, что для получения быстрых частиц совсем необязательно применять ускорители. Вспомните, ведь атомы и молекулы любого вещества всегда находятся в непрерывном движении. Причем скорость движения атомов, а следовательно, и ядер растет с повышением температуры вещества. Поэтому надо нагреть смесь легких элементов. Ядра этих элементов при своем движении будут сталкиваться друг с другом — соединяться. Происходят ядерные реакции и выделяется энергия. Если тепла, получающегося в этих реакциях, достаточно, чтобы поддержать высокую температуру веществ