а, то будет осуществляться самоподдерживающийся ядерный процесс. Этот процесс и называется термоядерной реакцией.
Примерно так же мы зажигаем смесь газа с воздухом в газовой горелке. Вы знаете, что газ сам по себе не загорится. Для его горения необходима температура порядка 400–500 градусов. Надо повернуть кран, пустить газ и поднести к нему зажженную спичку. Дальше уже газ сам будет поддерживать свое горение. Будет идти так называемая термохимическая реакция, при которой тепла, выделяющегося за счет химической реакции горения газа, достаточно, чтобы поддерживать существование самой реакции.
То же самое будет, если мы как-нибудь подожжем смесь легких элементов. Будет идти поддерживающая сама себя термоядерная реакция, при которой будет выделяться энергия, в десятки миллионов раз большая энергии любой химической реакции.
Но оказалось, что сделать это совсем не так просто. Для «зажигания» термоядерной реакции уже простая спичка не годится; нужна зажигалка, дающая температуру в несколько миллионов градусов. Только тогда скорость некоторой части легких ядер будет достаточна для преодоления отталкивающих электростатических сил и осуществления ядерных реакций.
Энергия Солнца и звезд. Получить температуру в несколько миллионов градусов в земных условиях очень трудно. Но оказывается, что термоядерные реакции идут в природе без нашего участия.
Солнце и звезды излучают огромную энергию в мировое пространство, и эта энергия пополняется за счет ядерных реакций соединения легких элементов. В центре Солнца температура порядка 13 миллионов градусов. При этой температуре атомы полностью ионизованы, то есть вокруг их ядер уже не существует электронных оболочек. Фактически Солнце заполнено электронно-ионным газом. Высокие температуры вызывают колоссальные давления этих газов, и ядра могут подойти значительно ближе друг к другу, нежели в земных условиях при обычных температурах. Благодаря давлению плотность газов в центре Солнца равна около 80 граммов на кубический сантиметр, что намного больше плотности самых тяжелых твердых тел на земле.
Исследования показали, что на Солнце и в ряде других звезд идет целый ряд ядерных реакций, в результате которых четыре атома водорода превращаются в одно ядро гелия.
В результате этих реакций выделяется огромная энергия. При превращении одного килограмма водорода в гелий выделяется тепло, достаточное для того, чтобы вскипятить полтора миллиона кубометров воды.
Интересно, что термоядерная реакция на Солнце протекает очень медленно. Нужно несколько миллионов лет, чтобы четыре атома водорода превратились в ядро гелия. Поэтому тепло, излученное десятками тонн солнечного вещества в сутки, недостаточно, чтобы вскипятить один стакан воды. При таком медленном процессе только благодаря участию гигантских масс возможно выделение Солнцем огромного количества тепла. Если применить известный уже нам закон взаимосвязи массы и энергии, то оказывается, что наше Солнце излучает такую огромную энергию, что вместе с этой энергией каждую секунду Солнце теряет четыре с половиной миллиона тонн своего веса. Правда, для Солнца эта потеря совершенно ничтожна. Масса его настолько велика, что за два миллиарда лет своего непрерывного излучения Солнце теряет не больше одной десятой процента своего веса.
Естественно, что в результате ядерных реакций содержание водорода на Солнце уменьшается, и после того как весь водород израсходуется, выделение энергии прекратится: Солнце погаснет. Но и здесь опасаться незачем. Сейчас на Солнце столько водорода, что его хватит, как показывают подсчеты, на 100 миллиардов лет.
Солнце на земле. Мы приходим с вами к удивительному выводу. Оказывается, человечество за все время своего существования всегда использовало ядерную энергию — энергию Солнца. Действительно, мы уже говорили, что какой бы источник энергии мы ни имели на земле, его происхождение неразрывно связано с Солнцем.
Однако земля получает ничтожную часть энергии ядерных реакций, происходящих на Солнце. Еще меньшую часть полезно расходуем мы для наших нужд. И, безусловно, прав академик Несмеянов, когда он сказал в 1955 году на сессии Академии наук: «Настало время вместо использования жалких крох консервированной в том или ином виде на нашей планете колоссальной энергии Солнца создать свое Солнце на земле». Не правда ли, это звучит как фантазия? Но мы не привыкли слышать из уст выдающегося ученого, президента Академии наук, фантастические идеи. Разве фантазия электростанции, использующие ядерную энергию деления урана, двигатели на атомном горючем? Еще ближе мы подойдем к цели, когда сумеем получить управляемую термоядерную реакцию, подобную реакциям, идущим на нашем большом Солнце. Тогда мы действительно создадим свое Солнце на земле.
На этом пути ученым предстоит решить еще очень много трудных задач. Мы обладали до сих пор единственным средством, позволяющим получать температуру в миллионы градусов, необходимую для осуществления термоядерных реакций. Это — взрыв атомной бомбы. Она и применяется в качестве детонатора для термоядерного, водородного оружия. Но, конечно, невозможно применять для промышленных целей атомную бомбу. Поэтому прежде всего надо было найти возможность «зажигать» термоядерные реакции, не прибегая к атомному взрыву, то есть построить прибор, позволяющий получать температуру в миллион градусов.
Хотя наиболее выгодной ядерной реакцией является соединение ядер обычного водорода, но, к сожалению, осуществление термоядерной реакции на земле на таком горючем вряд ли возможно. Значительно проще осуществить термоядерные реакции на тяжелом водороде (дейтерии) и особенно легко — на сверхтяжелом водороде (тритии). Эти реакции уже используются в водородной бомбе.
Дейтерия на земле — огромные запасы. Он содержится в любой воде в небольшом количестве: примерно 0,015 процента к имеющемуся там водороду. Но ведь вода в земных океанах неисчерпаема. Было бы очень заманчивым использовать этот источник энергии в мирных целях. Быстрорастущие потребности человечества в энергии были бы обеспечены на миллиарды лет. Над этой проблемой работают многие ученые в различных странах. Исследования, проведенные советскими и зарубежными учеными в последние годы, показали, что имеются реальные пути к решению этой великой задачи.
Магнитный мешок. Для того чтобы нагреть водород до миллиона градусов, нужна небольшая энергия. Для одного грамма дейтерия это всего несколько киловатт-часов. Трудность заключается в том, что при таких температурах атомы и молекулы газов обладают огромными скоростями и разбегаются в разные стороны. Давление газа достигает миллионов атмосфер. Тепло переходит от дейтерия к окружающему веществу, к стенкам сосуда, в котором происходит это нагревание. Естественно, что в этом случае мы уже будем затрачивать огромную энергию на нагревание сосуда. Нагреть нам дейтерий так не удастся. Да и какой сосуд выдержит температуру в миллионы градусов и давление в миллионы атмосфер? Надо было придумать такую термоизоляцию, которая дала бы возможность стенкам сосуда оставаться холодными в то время, когда газ в сосуде имеет температуру в миллионы градусов. Кроме того, нужно, чтобы давление на стенки сосуда не было бы слишком высоким. Казалось бы, что эта задача неразрешима. Но решение было найдено.
Нагретый до миллионов градусов газ уже не является обычным веществом. Он состоит из движущихся отдельно друг от друга заряженных частиц: положительных атомных ядер и отрицательных электронов. Этот газ называется плазмой. Задача заключается в том, чтобы удержать заряженные частицы вместе, так как при их разлете, естественно, будет уходить энергия, заключенная в объеме газа.
В 1950 году академики И. Е. Тамм и А. Д. Сахаров сделали очень интересное предложение о применении магнитного поля для термоизоляции плазмы высокой температуры. Дело в том, что в магнитном поле заряженные частицы не могут двигаться прямолинейно, а заворачиваются по окружностям. Чем больше магнитное поле, тем по меньшей окружности двигаются ионы и электроны. Правда, при столкновении друг с другом они будут перемещаться, но уйдут не дальше, чем на длину радиуса окружности. При сильном магнитном поле потеря энергии плазмой за счет движения частиц должна уменьшаться в десятки и сотни тысяч раз. Заряженные частицы нагретой до миллионов градусов плазмы будут как бы находиться в магнитном мешке. Однако стенки этого мешка, образованные магнитным полем, уже не боятся сверхвысоких температур.
После того как академики И. Е. Тамм и А. Д. Сахаров высказали свою идею, физики вспомнили, что с подобным явлением, правда в меньшем масштабе, с так называемым пинч-эффектом, они уже встречались при исследовании газового разряда. Читатель ведь знает, что, когда по проводнику протекает электрический ток, вокруг него образуется магнитное поле. То же самое происходит при прохождении тока через плазму. И вот при больших токах в ртутной дуге и при некоторых других формах электрического разряда возникающая там плазма благодаря сильному магнитному полю сжимается в узкий шнур. При этом сжатии, так же как это имеет место при обычном сжатии газа, происходит повышение температуры. Однако при сравнительно малых токах, которые до сих пор использовались в газовом разряде, температура плазменного шнура достигала только десятка тысяч градусов. Это далеко до температуры, необходимой для термоядерных реакций. Но это не обескуражило ученых. Были произведены необходимые расчеты, и большая группа физиков под руководством академика Л. А. Арцимовича приступила к исследованиям.
Близко к великой цели. Оказалось, что для успеха дела — получения температуры в миллион градусов — нужны токи порядка сотен тысяч и даже миллиона ампер. Такой ток можно пропустить через плазму разрядной трубы только при напряжении в несколько десятков тысяч вольт. Достаточно перемножить значение тока и напряжения, чтобы убедиться, что мощность установки превосходит мощность всех гидроэлектростанций Советского Союза. Выход заключался в том, чтобы пропускать через разрядную трубку мощные токи в виде импульсов, длящихся миллионные доли секунды. Тогда при колоссальной мгновенной мощности средняя мощность, потребная для питания установки, получается вполне приемлемой величины.