Ядерные реакторы — страница 4 из 35

[4].

Можно утверждать, и это подтверждается опытом, что энергия и масса частиц и ядер, вступивших в ядерную реакцию, будут в точности равны энергии и массе образовавшихся в результате превращения частиц и ядер. При этом надо учесть, что гамма-квант также обладает массой и, кроме того, согласно, принципу относительности масса частиц увеличивается с ростом скорости их движения:

где т0 масса покоящейся частицы и υ — ее скорость. Таким образом, при скоростях, близких к скорости света с, масса частиц значительно возрастает.

В 1932 году физиками при исследовании космических лучей были обнаружены новые частицы. Они по своим свойствам оказались очень похожими на электроны. Но, имея равную с электронами массу, эти частицы, названные позитронами, несут положительный заряд. Позитроны в паре с электронами ведут себя довольно необычно: при соединении они исчезают, или как говорят, аннигилируют. На этом основании физики-идеалисты пытаются доказать, будто бы современная физика открыла исчезновение материи и «опровергла» материализм. Однако опыты показывают, что вместо пары противоположно заряженных частиц появляются два равных по величине гамма-кванта, энергия и масса которых равны энергии и массе электрона и позитрона.

Существует и обратное явление — «рождение» пары частиц (позитрона и электрона) при поглощении гамма-кванта каким-либо тяжелым ядром. Причем само ядро в этом «рождении» не участвует. Позитрон и электрон образуются вблизи ядра, в области действия электростатических сил его положительного заряда.

Опыты показали, что гамма-квант превращается в электрон и позитрон, сумма энергий и масс которых равна энергии и массе этого гамма-кванта.

Таким образом, при аннигиляции и «рождении» пар, так же как и во всех процессах, выполняются законы сохранения энергии и массы.

Давайте проведем воображаемый опыт. Заключим какой-нибудь объем, где находятся различные частицы и ядра, в непрозрачную для любых частиц и излучений оболочку. Тогда, что бы ни происходило внутри этого объема, общая энергия и масса всего объема останутся неизменными. Любые частицы и гамма-кванты, испускаемые при ядерных реакциях, возбуждении и ионизации атомов, останутся в том же объеме. Будет ли происходить аннигиляция пар либо их «рождение», передаст ли фотон свою энергию электрону или электрон возбудит атом с последующим излучением кванта света — в любом процессе не будут исчезать ни масса, ни энергия. Вместе с тем масса всего объема определяет его общую энергию по закону Е=тс2.

Конечно, такой идеальной оболочки, непрозрачной для любых излучений, не существует, и при любом процессе, где выделяется энергия, часть этой энергии теряется, уходит из малого объема в пространство. Законы же сохранения массы и энергии всегда выполняются.


Ядерные реакции. В средние века алхимики пытались превращать одни вещества в другие. Больше всего их интересовало искусственное получение золота, сулившее несметные богатства. Сейчас нам понятна бесплодность таких попыток. Даже в наше время химик, обладающий несравненно большими знаниями и опытом, в прекрасно оборудованной лаборатории с помощью какого-либо химического процесса не может превратить атомы одного элемента в атомы другого.

Но в начале XX века мечту алхимиков осуществили физики. Они сумели превратить одни элементы в другие.

Впервые превращение одного элемента в другой было выполнено Резерфордом в 1919 году.

Еще значительно раньше физики научились регистрировать отдельные альфа-частицы, получаемые при радиоактивном распаде, на экране, покрытом сернистым цинком.

Посмотрите внимательно в темноте на светящийся циферблат ваших часов. Если вы поднесете его ближе к глазам или воспользуетесь увеличительной линзой, то увидите, что свечение циферблата перестанет быть ровным. То в одном, то в другом месте циферблата будут возникать быстрогаснущие отдельные вспышки. Эти вспышки появляются неожиданно и через самые различные промежутки времени. Состав, покрывающий стрелки и цифры на часах, обычно состоит из сернистого цинка, к которому примешано небольшое количество радиоактивного препарата. Отдельные вспышки, или, как их обычно называют, сцинтилляции, обусловлены взаимодействием излучаемых препаратом альфа-частиц с сернистым цинком.

Этим явлением сцинтилляции и воспользовался Резерфорд в своих исследованиях. Он поместил радиоактивный препарат (рис. 6) А в сосуде, наполненном газом, в таком месте, что альфа-частицы не могли достигнуть стенки сосуда, где был расположен экран В. Достаточно толстый слой исследуемого газа поглощал все альфа-частицы, и вспышек на экране не появлялось.


Рис. 6. Схема опытов Резерфорда. Достигнуть экрана и произвести сцинтилляцию могут только протоны, выбитые альфа-частицей из ядра азота

Однако при наполнении сосуда азотом на экране появились сцинтилляции. Это не могли быть альфа-частицы. При наполнении сосуда кислородом или углекислотой вспышки на экране исчезали. Совершенно ясно, что частицы, вызывающие сцинтилляции, могли быть получены только в результате взаимодействия (реакции) альфа-частиц и атомов азота.

Тщательные исследования показали, что в азоте действительно имела место ядерная реакция, которую можно записать так:

Азот14+гелий4→кислород17+водород1[5].

Легкие частицы слабее поглощаются газом. Поэтому частицы, пробегающие путь почти в 30 сантиметров от радиоактивного препарата до экрана, могли быть только ядрами водорода — протонами.

Таким образом, было установлено, что при бомбардировке ядер азота альфа-частицами последние как бы застревают в ядрах. Но взамен альфа-частицы из ядра вылетает протон. Получающееся при этом новое ядро является ядром изотопа кислорода с массовым числом 17.

Интересно подсчитать уже известным нам методом, каков баланс энергии в этой реакции. Написав сумму масс ядер до реакции в левой части формулы и сумму масс ядер после реакции в правой части (14,0075+4,0040→17,0045+1,0081, или 18,0115→18,0126), видим, что сумма масс частиц до реакции меньше суммы масс, получившихся после реакции частиц, на 0,0011, то есть в этой реакции энергия не выделяется, а поглощается. В данном случае превращение элементов идет за счет энергии альфа-частиц, выбрасываемых ядрами радиоактивного препарата.

Таким образом, мы выяснили, что не при всякой ядерной реакции выделяется энергия. Так же как и в некоторых химических реакциях, значительное число ядерных превращений требует расхода энергии.


Ядро — жидкая капля. Итак, ядерные реакции можно осуществить путем бомбардировки ядер частицами. Такая частица, попав в ядро, останется в нем, удерживаемая большими ядерными силами. Но быстрая частица, попавшая в ядро, передаст свое движение всем ядерным частицам.

Закон сохранения энергии утверждает, что энергия влетевшей в ядро частицы не пропала. Она равномерно распределилась между всеми ядерными частицами. Это очень похоже на то, что происходит при нагревании жидкости. Действительно, мы знаем, что если через воду пропустить пар, то молекулы пара, сталкиваясь с молекулами холодной воды, будут передавать им свою энергию. Молекулы воды придут в более энергичное движение. Иными словами, температура воды, которая определяется скоростью движения молекул, повысится — вода нагреется.

Скорости движения частиц в ядре, так же как и скорости молекул жидкости, соответствуют определенной температуре. Но скорость ядерных частиц в десятки тысяч раз больше скорости молекул жидкости и газа при обычных температурах, и поэтому температура ядра колоссальна. Когда частица с энергией около 10 Мэв влетает в ядро, его температура достигает 10–15 миллиардов градусов. Такое ядро можно представить себе в виде сильно нагретой капли жидкой ядерной материи, способной испаряться.

Очевидно, что через некоторое время после резкого повышения температуры ядра из него вылетит (испарится) какая-нибудь частица. Энергия, необходимая для вылета этой частицы, соответствует теплоте испарения жидкости.

Аналогию ядра с жидкой каплей можно провести значительно дальше. Ядро, как уже указывалось, состоит из двух сортов частиц: протонов и нейтронов, и, следовательно, его нужно сравнивать со смесью двух жидкостей. Скорость испарений каждой из этих жидкостей зависит от температуры. Так же и в ядре при определенных условиях может быть наиболее вероятен вылет нейтрона или протона. Раскаленная жидкая капля железа излучает видимый свет. Нагретое до высокой температуры ядро также излучает гамма-лучи, обладающие способностью проникать через толстые непрозрачные слои.

Над поверхностью нагретой воды вы всегда наблюдаете туман. Это то, что в нашей практике не совсем верно называют паром. Капельки тумана состоят из большого числа молекул и образуются при конденсации паров после выхода с поверхности жидкости. Примерно то же наблюдается в ядерных реакциях. Часто вылетают не отдельные частицы, а целое ядро, состоящее из четырех ядерных частиц, — альфа-частица. Правда, аналогия здесь не совсем полная. Альфа-частица, по-видимому, образуется внутри ядра, а капли тумана — после выхода молекул с поверхности жидкости.

После вылета какой-нибудь частицы ядро охлаждается так же, как охлаждается при усиленном испарении жидкость. Как на испарение жидкости, так и на вылет частицы затрачивается энергия. В том случае, когда ядро обладает большой остаточной энергией, возможен вылет второй частицы. Но если остатка энергии не хватает для удаления второй частицы, ядро охлаждается испусканием света — гамма-излучением.

Не все частицы легко могут проникнуть в положительно заряженное ядро атома. Протону или альфа-частице, несущим положительные заряды, нелегко подойти к одноименно заряженному ядру. Сильное электростатическое поле ядра будет отталкивать такую частицу. Преодолеть электростатические силы и попасть в область действии ядерных сил может только достаточно быстрая, обладающая большой энергией заряженная частица.