В случае позитронной радиоактивности, наоборот, протон превращается в нейтрон, ядро теряет положительный заряд, равный заряду протона, и номер элемента становится на единицу меньше. Это происходит, например, при превращении азота13 в углерод13.
Однако в поведении радиоактивного ядра при испускании электрона и позитрона есть что-то странное. В каждом подобном акте ядро теряет вполне определенную энергию. Можно ожидать, что энергия (или скорость) всех электронов (или позитронов), испускаемых ядрами этого сорта, будет одинакова. Физики сумели измерить эту энергию, и неожиданно оказалось, что излучаемые электроны обладают самыми различными энергиями — от очень малой до максимальной энергии, теряемой радиоактивным ядром.
Тут обнаружилось какое-то неблагополучие. Ядро передает электрону совершенно определенную энергию. Но в процессе этой передачи часть энергии где-то пропадает.
Явное несоответствие с законом сохранения энергии, который утверждает, что энергия никогда не возникает и не пропадает!
Но, может быть, часть энергии уносят с собой гамма-кванты, часто сопровождающие испускание электрона или позитрона?
Однако измерения показали, что гамма-квант уносит с собой всегда определенную часть энергии и испускается позже электрона. Кроме того, энергия, теряемая ядром, всегда равна сумме энергии гамма-кванта и максимальной энергии электрона.
А если вылетевший электрон не обладает максимальной энергией, то куда же девается ее часть, недостающая до максимальной?
Может быть, можно объяснить странное поведение радиоактивного ядра, если предположить, что из него одновременно вылетают два электрона?
Действительно, в этом случае у каждого из электронов может быть самая различная энергия. Сумма этих энергий должна быть равна энергии, теряемой ядром. Однако такое предположение сразу же опровергается тем обстоятельством, что ядро при электронном или позитронном распаде всегда теряет или приобретает заряд, соответствующий одному элементарному заряду.
Такое положение привело к тому, что реакционно настроенная часть зарубежных физиков снова стала утверждать, что закон сохранения энергии — один из самых фундаментальных законов природы — не выполняется в атомных и ядерных процессах.
Очень скоро было показано, что для того чтобы устранить все сомнения, достаточно предположить, что одновременно с электроном (позитроном) вылетает еще одна нейтральная частица — нейтрино, которая и уносит с собой недостающую часть энергии. Таким образом, взаимопревращение нейтрона и протона можно записать следующим образом:
Стрелки разных направлений указывают, что может быть и обратный процесс: протон, электрон и нейтрино превращаются в один нейтрон.
Существование нейтрино доказывается не только радиоактивным распадом. Оно подтверждается также рядом других экспериментальных фактов, полученных за последние годы физиками.
Благодаря отсутствию электрического заряда и очень малой массе нейтрино слабо взаимодействует с окружающими атомами и ядрами; в лучшем случае эта частица ионизирует один атом на пути 500 километров. Чтобы обнаружить такую частицу, нужны очень тонкие и сложные эксперименты.
Долгое время усилия физиков в этом направлении оставались безуспешными. Только совсем недавно, в конце 1953 года, исследования с достаточной достоверностью доказали, что нейтрино действительно существует.
Так потерпела окончательный крах реакционная идеалистическая концепция, отрицающая применимость закона сохранения энергии в микромире атома и ядра.
У читателя могут возникнуть вопросы: почему происходит электронный или позитронный распад? Почему при распаде одни ядра испускают электроны, а другие позитроны?
Современная физика дает ответ и на эти вопросы.
Исследования показали, что для того, чтобы атомные ядра были более прочными, протоны и нейтроны должны находиться в ядре в определенном соотношении. Это соотношение меняется для различных ядер. Так, легкие ядра более прочны, если они состоят из равного количества протонов и нейтронов. Средние и тяжелые ядра становятся прочнее, если в них несколько преобладает число нейтронов.
В тяжелых ядрах электростатические силы, расталкивающие протоны, настолько велики, что эти ядра становятся неустойчивыми даже при большом избытке нейтронов. Поэтому находящиеся в конце периодической системы элементы являются радиоактивными и их ядра могут стать более прочными, только излучая различные частицы.
Если в ядре слишком много нейтронов, оно неустойчиво и становится более прочным, выбрасывая в радиоактивном распаде электрон и нейтрино. При этом один из нейтронов превращается в протон. Наоборот, если в ядре находится избыток протонов, то наиболее вероятен позитронный радиоактивный распад.
Переход ядра в устойчивое состояние происходит не обязательно при одном распаде. Очень часто только в результате целого ряда радиоактивных превращений с вылетом альфа- и бета-частиц, сопровождаемых гамма-излучением, радиоактивное ядро переходит в ядро устойчивого элемента. Так, ядро урана238, претерпевая ряд превращений, постепенно переходит в ядро свинца206.
Схему этого ряда превращений можно проследить по рис. 8. Мы видим, как ядро урана238 выбрасывает альфа-частицу и превращается в ядро тория234. Но это ядро также неустойчиво. Оно перегружено нейтронами. Происходит превращение одного из нейтронов в протон с вылетом электрона и нейтрино. Получается ядро протактиния234, которое тем же способом переходит в ядро урана234. Вылет электрона недостаточно «охлаждает» ядро, и поэтому этот распад сопровождается гамма-излучением.
Далее следует длинный ряд преобразований с испусканием альфа-частиц, а иногда и гамма-лучей. В результате этих превращений образуется изотоп свинца — свинец214. Но этот свинец неустойчив. Он также перегружен нейтронами, его ядро, испуская электрон, образует ядро висмута214, которое, теряя альфа-частицу, переходит в ядро таллия210. В этом неустойчивом ядре все еще есть излишки нейтронов. Лишние нейтроны превращаются в протоны, и ядро, три раза испуская электрон, переходит в ядро полония210, из которого вылетает альфа-частица, и, наконец, образуется вполне устойчивое ядро свинца206.
Интересно, что получающееся при промежуточных превращениях ядро висмута210 может распадаться двумя способами: излучая электрон или альфа-частицу. В обоих случаях конечным ядром является ядро свинца206.
Не следует думать, что все эти процессы протекают очень быстро. В среднем проходит много миллиардов лет, прежде чем из ядра урана238 получится ядро свинца206. Отдельные превращения происходят очень быстро, другие требуют тысяч, миллионов и даже миллиардов лет. Например, среднее время «жизни» ядер урана234 около 380 тысяч лет, тория234 — 35 дней, а свинца214 — 38 минут.
Было бы неправильным сравнивать среднее время «жизни» радиоактивного ядра со средним временем жизни, например, человека. Вполне закономерно то, что человек умирает не в юношеском, а в престарелом возрасте, так как изношенный организм старого человека сильнее подвержен различного рода заболеваниям.
Но нельзя говорить об «износе» радиоактивных ядер. Эти ядра «умирают» независимо от внешних обстоятельств. Законы радиоактивных превращений таковы, что с одинаковой вероятностью распадаются как старые, давно образовавшиеся ядра, так и молодые, только что получившиеся из другого радиоактивного ядра.
Новые элементарные частицы. Для того чтобы объяснить плотность и огромную прочность ядра, в 1935 году японский физик Юкава предположил, что ядерные силы вызываются особыми частицами, в 200–300 раз тяжелее электрона. Один из нуклонов испускает эту частицу, другой ее поглощает. Таким образом, частица связана с каждым из нуклонов и обусловливает ядерные силы между ними. Эта на первый взгляд странная теория Юкавы, как мы знаем, позволила объяснить величину ядерных сил и обстоятельство, благодаря которому эти силы действуют на весьма малом расстоянии.
Надо было найти такую частицу. И вот в 1937 году появилось сообщение, что в космических лучах были действительно найдены частицы, обладающие подходящей массой. Но ликование физиков было преждевременным. Вновь открытая частица — мю-мезон очень слабо взаимодействовала с ядрами и поэтому, естественно, не могла играть роли связующего звена между протоном и нейтроном.
Десять долгих лет физики усиленно искали другую частицу. Наконец ее след был обнаружен в эмульсии фотопластинки, облученной космическими лучами высоко в горах. Она оказалась несколько тяжелее своей предшественницы и была названа пи-мезоном. Пи-мезон живет очень недолго — несколько миллиардных долей секунды и затем превращается в знакомый нам мю-мезон, излучая при этом нейтрино. Пи-мезон живет примерно в 100 раз меньше мю-мезона. Вот поэтому физики так долго и не могли обнаружить пи-мезоны. Ведь 99 процентов времени своей жизни они проводят в виде мю-мезонов.
Как мы уже с вами знаем, пи-мезоны и оказались частицами, о существовании которых предполагал Юкава. По-видимому, они и обусловливают ядерные силы, действующие между протонами и нейтронами. Пи- и мю-мезоны могут быть отрицательными и положительными, в зависимости от знака электрического заряда, который всегда равен по величине заряду электрона. Найден был также пи-мезон, не имеющий электрического заряда.
Последние годы оказались для физиков весьма продуктивными. Было найдено больше десятка новых элементарных частиц: ка-мезоны с массой около 1000 электронных масс и гипероны — частицы тяжелее протонов. Большинство этих частиц было найдено в космических лучах. Сейчас, когда ученые обладают весьма мощными ускорителями заряженных частиц, различные мезоны получаются искусственно.