Ящик Пандоры. Семь историй о том, как наука может приносить нам вред — страница 10 из 48


Каждые несколько лет сообщество химиков Германии присуждает премию Вильгельма Норманна за выдающийся вклад в исследование и изучение жиров. По иронии судьбы именно открытие Норманна — превращение ненасыщенных жиров в трансжиры, — вероятнее всего, вызвало больше болезней и смертей, чем любая другая искусственная химическая реакция в истории.


Итак, какой же урок следует извлечь? Можно ли было всего этого избежать? Снова скажу, что, как и в случае с обезболивающими, все дело в данных. В конце 1970-х годов, когда комитет Макговерна постановил, что объем жиров в рационе не должен превышать 30 % от общего количества калорий, не было достаточно сведений, чтобы официально это рекомендовать. Точно так же, когда появились инструкции по поводу типа жиров, исследования противоречили друг другу. Несколько экспериментов показало, что насыщенные жиры могут повысить частоту сердечных заболеваний, при этом одно валлийское исследование, опубликованное в то же время, обнаружило прямо противоположный эффект: ненасыщенные жиры резко увеличивают риск сердечных заболеваний. Этот конфликт должен был по крайней мере заставить нас ненадолго остановиться. Но все пошло не так: появилось множество ничем не обоснованных заявлений о том, что маргарин — «полезная для сердца» альтернатива сливочному маслу (хотя на самом деле все как раз наоборот), и его подавали в Америке повсюду.

Глава 3. Кровь из воздуха

Тысячи ж бед улетевших меж нами блуждают повсюду,

Ибо исполнена ими земля, исполнено море.

Гесиод. Труды и дни

Мы не так уж сложно устроены. При том что все люди разного роста и веса, своих форм и размеров, с уникальными историями жизни, мы отличаемся характерами, у нас несхожие гены, а также белки и энзимы, которые из них состоят, все равно наш «комплект» сводится к четырем основным элементам: водород, кислород, углерод и азот. Если какой-то из этих элементов исчезнет с Земли, нам придет конец.

Три элемента из четырех получить очень легко.

Источник водорода — вода, которую мы пьем, поскольку молекула воды содержит два атома водорода и один атом кислорода (H2O). Кислород, что неудивительно, поступает в организм из воздуха, которым мы дышим (O2). (Только рыбы благодаря наличию жабр могут получать кислород из воды.) Углерод тоже поступает из воздуха: зеленые растения под действием солнечного света поглощают из него углекислый газ (CO2) и всасывают в виде сложных сахаров, которые содержат углерод (этот процесс называется фотосинтезом). Мы получаем углерод, когда едим растительную пищу или мясо травоядных животных. Как бы то ни было, воды и воздуха в природе более чем достаточно, а значит, у нас в изобилии водород, кислород и углерод.

Самое слабое звено в цепочке — азот, который поступает к нам только из почвы. Когда фермеры выращивают злаки и другие культуры — кукурузу, пшеницу, ячмень, картофель или рис, — почва истощается, и азота в ней становится меньше. Чтобы продолжать выращивать сельскохозяйственные культуры, его нужно возместить, то есть обогатить им землю. Есть три способа наполнить ее азотом. Можно использовать натуральные удобрения, полученные из перегнивших растений или навоза. Или чередовать посев злаков с бобовыми (например, нутом, люцерной, горохом, соей или клевером); на их корнях живут бактерии, способные брать азот из воздуха и перерабатывать, чтобы он насыщал почву (это называется азотфиксацией). А можно подождать грозы: как выяснилось, удар молнии способствует усвоению азота из воздуха[11].

Если бы фермеры всех стран и континентов использовали каждый сантиметр плодородной земли, удобряли поля, чередовали сельскохозяйственные культуры и убеждали людей стать вегетарианцами, они могли бы накормить около четырех миллиардов человек. Но уже в 2016-м на Земле жило более семи миллиардов. И хотя многие голодают, проблема не в том, что не хватает еды. Ее достаточно. Проблема в том, что мы не прилагаем усилий, дабы обеспечить ею тех, кто в ней нуждается.

Итак, как же фермеры научились это делать? Как стало возможно накормить столько человек? Ответ кроется в событии, произошедшем 2 июля 1909 года.

Именно благодаря одному случаю 50 % азота в наш организм поступает из природных источников, а 50 % — благодаря работе человека, который одновременно и спас наши жизни, и проложил путь к гибели.


Фриц Габер родился 9 декабря 1868 года в немецком городе Бреслау[12]. Его родители, Зигфрид и Паула, были двоюродными братом и сестрой и поженились вопреки возражениям семьи. Вскоре произошла трагедия: через три недели после рождения Фрица, в канун Нового года, молодая мама умерла от послеродовых осложнений. Зигфрид так и не оправился после ее смерти, погрузился в глубокую депрессию и с головой ушел в работу, не обращая никакого внимания на сына. Фрица воспитывали тетя, бабушка и экономка. Через семь лет Зигфрид женился снова, в этом браке у него с разницей в пять лет родились три девочки. Он стал любящим отцом — но для дочерей, сына же продолжал не замечать, поскольку при его виде постоянно вспоминал о гибели первой жены. В юности Фриц более всего хотел получить одобрение отца, но безуспешно.

Однажды произошло событие, окончательно порвавшее отношения между ними. Окончив среднюю школу, Фриц до поздней ночи праздновал в пабе. Но завтрак в доме Зигфрида Габера подавали ровно в 7:15, и не было никаких исключений из правил и никаких оправданий для тех, кто его пропускал. Когда Зигфрид увидел, что Фриц еще спит, он повел дочерей в спальню сына и сказал: «Смотрите внимательно! Так начинается жизнь пьяницы!» Сорок лет спустя мужчина плакал, рассказывая эту историю другу, поскольку ему так и не удалось смириться с разочарованием и отчуждением отца.

Не сумев добиться отеческой любви, Фриц стал пытаться завоевать любовь Отечества, но и оно, несмотря на выдающиеся достижения ученого, жестоко отвергло его.

В 19 лет Фриц поступил в Гейдельбергский университет. Там его наставником стал Роберт Бунзен, благодаря которому молодой человек влюбился в химию, начав с помощью недавно изобретенной горелки Бунзена изучать спектры светового излучения. В отличие от сверстников, Габера не вдохновляла карьера ученого; он хотел сделать что-то имеющее практическую ценность, применимое в промышленности и даже способное произвести там революцию. И парень ушел из университета, работал на винокурне в Будапеште, на фабрике удобрений под Освенцимом и в текстильной компании под Бреслау.

Когда Габеру исполнилось 22 года, он вернулся в германскую столицу, стал посещать Берлинский технический университет и работать с Карлом Либерманом — первым ученым, которому удалось синтезировать ализарин, популярный красный краситель. Фриц увидел будущее синтетических красок, решив, что это отличный союз его влюбленности в химию и неутоленной потребности в одобрении папы. Зигфрид Габер покупал и продавал натуральные красители, а его сын надеялся, что выведет компанию отца из средневековья натуральных средств и для того начнется новая яркая эра искусственных красителей.

Однако Фриц не был хорошим бизнесменом. В 1892 году, когда по портовому Гамбургу прокатилась эпидемия холеры, он убедил отца скупить все имеющиеся запасы хлорной извести — единственного известного дезинфицирующего средства. Эпидемия быстро утихла, а Габеры остались с никому не нужным продуктом небольшой ценности. Зигфрид обозвал сына дураком и прогнал. «Поступай в университет! — кричал он. — Тебе не место в бизнесе!»

В возрасте 26 лет Фриц оставил красильный бизнес и начал учебу в университете Карлсруэ. Там, на Рейне, к югу от Гейдельберга, он сделал то, что большинство химиков в то время считали невозможным. За это открытие Фриц Габер получил Нобелевскую премию. Но когда он отправился получать ее в Стокгольм, несколько других лауреатов бойкотировали это событие, не в силах смириться с теми зверствами, которые совершил Габер.


Осенью 1898 года президент Британской академии наук Уильям Крукс произнес в бристольском мюзик-холле речь, которую позже назовут лучшим выступлением века. Этот ученый занимался химией и физикой, открыл новый химический элемент таллий и изобрел электронно-лучевую трубку, которую потом будут использовать в компьютерах и телевизорах. За год до этой лекции королева Великобритании пожаловала Круксу рыцарское звание. Уильям Крукс привык, что на протяжении большей части карьеры оказывался прав и, когда он вставал и произносил речь, его обычно слушали.

Все в зале были уверены: Крукс сделает то же, что и предшествующие президенты академии, — нагонит скуку, зачитывая список благодарностей британским ученым. Но он вышел за рамки протокола. «Англия и другие страны могут подвергнуться смертельной опасности», — начал он, а затем пояснил, как развитие науки и медицины поставило человечество перед выбором. Люди стали жить дольше, а значит, нужно прокормить гораздо больше ртов. Поскольку сельское хозяйство велось уже на всех крупных равнинных территориях планеты, а с каждого акра можно было накормить только десять человек, к тому же города все сильнее разрастались, стало очевидно, что ситуация, когда людям будет нечего есть, всего лишь вопрос времени. «Цивилизованные народы», по словам Крукса, оказались на грани вымирания от голода.

Крукс предположил, что люди начнут гибнуть в 1930-е годы, сначала тысячами, потом сотнями тысяч, потом миллионами. Ученые расходились во мнениях относительно того, когда начнется голод, но в том, что это произойдет, никто не сомневался: население росло быстрее, чем возможности людей прокормить себя. Решением, по мнению Крукса, было создание синтетического азотсодержащего удобрения. Ученым нужно было найти способ получать азот из воздуха и каким-то образом превращать его в форму, удобную для добавления в почву. Способов азотфиксации с помощью бобовых или молнии было недостаточно. «Фиксация азота жизненно необходима, чтобы цивилизованное человечество продолжало развиваться, — сказал Крукс. — Нам на помощь должен прийти химик. Только в лабораторных условиях можно остановить голод и достичь изобилия».