Этот опыт позволяет сделать вывод: с уменьшением длины маятника частота его собственных колебаний увеличивается, а период пропорционально уменьшается.
Изменяя длину подвески маятника, добейся, чтобы его частота колебаний равнялась 1 Гц. Это должно быть при длине нити около 25 см. При этом период колебаний маятника будет равен 1 с. Каким бы ты не пытался создать первоначальный размах маятника, частота его колебаний будет неизменной. Но стоит только укоротить или удлинить нитку, как частота колебаний сразу изменится. При одной и той же длине нитки всегда будет одна и та же частота колебаний. Это собственная частота колебаний маятника. Получить заданную частоту колебаний можно, подбирая длину нити.
Колебания нитяного маятника — затухающие. Они могут стать незатухающими только в том случае, если маятник в такт с его колебаниями слегка подталкивать, компенсируя таким образом ту энергию, которую он затрачивает на преодоление сопротивления, оказываемого ему воздухом, энергию трения, земного притяжения.
Собственная частота характерна и для электрического колебательного контура. Она зависит, во-первых, от индуктивности катушки. Чем больше число витков и диаметр катушки, тем больше ее индуктивность, тем больше будет длительность периода каждого колебания. Собственная частота колебаний в контуре будет соответственно меньше. И, наоборот, с уменьшением индуктивности катушки сократится период колебаний — возрастет собственная частота колебаний в контуре. Во-вторых, собственная частота колебаний в контуре зависит от емкости его конденсатора. Чем емкость больше, тем больший заряд может накопить конденсатор, тем больше потребуется времени для его перезарядки, тем меньше частота колебаний в контуре. С уменьшением емкости конденсатора частота колебаний в контуре возрастает. Таким образом, собственную частоту затухающих колебаний в контуре можно регулировать изменением индуктивности катушки или емкости конденсатора.
Но в электрическом контуре, как и в механической колебательной системе, можно получить и незатухающие, т. е. вынужденные колебания, если при каждом колебании пополнять контур дополнительными порциями электрической энергии от какого-либо источника переменного тока.
Каким же образом в контуре приемника возбуждаются и поддерживаются незатухающие электрические колебания? Колебания радиочастоты, возбуждающиеся в антенне приемника. Эти колебания сообщают контуру первоначальный заряд, они же и поддерживают ритмичные колебания электронов в контуре. Но наиболее сильные незатухающие колебания в контуре приемника возникают только в момент резонанса собственной частоты контура с частотой тока в антенне. Как это понимать?
Люди старшего поколения рассказывают, будто в Петербурге от шедших в ногу солдат обвалился Египетский мост. А могло это случиться, видимо, при таких обстоятельствах. Все солдаты ритмично шагали по мосту. Мост от этого стал раскачиваться — колебаться. По случайному стечению обстоятельств собственная частота колебаний моста совпала с частотой шага солдат, и мост, как говорят, вошел в резонанс. Ритм строя сообщал мосту все новые и новые порции энергии. В результате мост настолько раскачался, что обрушился: слаженность воинского строя нанесла вред мосту. Если бы резонанса собственной частоты колебаний моста с частотой шага солдат не было, с мостом ничего бы не случилось. Поэтому, между прочим, при прохождении солдат по слабым мостам принято подавать команду «сбить ногу».
А вот опыт. Подойди к какому-нибудь струнному музыкальному инструменту и громко крикни «а»: какая-то из струн отзовется — зазвучит. Та из них, которая окажется в резонансе с частотой этого звука, будет колебаться сильнее остальных струн — она-то и отзовется на звук.
Еще один опыт — с маятником. Натяни горизонтально нетолстую веревку. Привяжи к ней тот же маятник из нити и пластилина (рис. 42).
Рис. 42.Опыт, иллюстрирующий явление резонанса
Перекинь через веревку еще один такой же маятник, но с более длинной ниткой. Длину подвески этого маятника можно изменять, подтягивая рукой свободный конец нитки. Приведи маятник в колебательное движение. При этом первый маятник тоже станет колебаться, но с меньшей амплитудой. Не останавливая колебаний второго маятника, постепенно уменьшай длину его подвески — амплитуда колебаний первого маятника будет увеличиваться. В этом опыте, иллюстрирующем резонанс механических колебаний, первый маятник является приемником колебаний, возбуждаемых вторым маятником. Причиной, вынуждающей первый маятник колебаться, являются периодические колебания растяжки с частотой, равной частоте колебаний второго маятника. Вынужденные колебания первого маятника будут иметь максимальную амплитуду лишь тогда, когда его собственная частота совпадает с частотой колебаний второго.
Такие или подобные явления, только, разумеется, электрического происхождения, наблюдаются и в колебательном контуре приемника. От действия волн многих радиостанций в приемной антенне возбуждаются токи самых различных частот. Нам же из всех колебаний радиочастот надо выбрать только несущую частоту той радиостанции, передачи которой мы хотим слушать. Для этого следует так подобрать число витков катушки и емкость конденсатора колебательного контура, чтобы его собственная частота совпадала с частотой тока, создаваемого в антенне радиоволнами интересующей нас станции. В этом случае в контуре возникнут наиболее сильные колебания с несущей частотой той радиостанции, на волну которой он настроен. Это и есть настройка контура приемника в резонанс с частотой передающей станции. При этом сигналы других станций совсем не слышны или прослушиваются очень тихо, так как возбуждаемые ими колебания в контуре будут во много раз более слабыми.
Таким образом, настраивая контур своего первого приемника в резонанс с несущей частотой радиостанции, ты с его помощью как бы отбирал, выделял колебания частоты только этой станции. Чем лучше контур будет выделять нужные колебания из антенны, тем выше селективность приемника, тем слабее будут помехи со стороны других радиостанций.
До сих пор я рассказывал тебе о замкнутом колебательном контуре, т. е. контуре, собственная частота которого определяется только индуктивностью катушки и емкостью конденсатора, образующих его. Однако во входной контур приемника входят также антенна и заземление. Это уже не замкнутый, а открытый колебательный контур. Дело в том, что провод антенны и земля являются «обкладками» конденсатора (рис. 43), обладающего некоторой электрической емкостью.
Рис. 43.Антенна и заземление — открытый колебательный контур
В зависимости от длины провода и высоты антенны над землей эта емкость может составлять несколько сотен пикофарад. Такой конденсатор на рис. 34, а был показан штриховыми линиями. Но ведь антенну и землю можно рассматривать и как неполный виток большой катушки. Стало быть, антенна и заземление, взятые вместе, обладают еще и индуктивностью. А емкость совместно с индуктивностью образуют колебательный контур.
Такой контур, являющийся открытым колебательным контуром, тоже обладает собственной частотой колебаний. Включая между антенной и землей катушки индуктивности и конденсаторы, мы можем изменять его собственную частоту, настраивать его в резонанс с частотами разных радиостанций. Как это делается на практике, ты уже знаешь.
Я не ошибусь, если скажу, что колебательный контур является «сердцем» радиоприемника. И не только радиоприемника. В этом ты еще убедишься. Поэтому ему я и уделил много внимания.
Перехожу ко второму элементу приемника — детектору.
В твоем первом приемнике роль детектора выполнял диод. Подробно о его устройстве и работе мы поговорим в шестой беседе. Сейчас же лишь скажу, что он является двухэлектродным полупроводниковым прибором, обладающим односторонней электропроводностью: хорошо проводит ток одного направления и плохо — ток обратного направления. Для простоты же объяснения работы диода как детектора будем считать, что ток обратного направления он вообще не проводит и является для нёго как бы изолятором. Это свойство диода иллюстрирует график, изображенный на рис. 44: диод беспрепятственно пропускает через себя положительные полуволны переменного тока и совсем не пропускает отрицательные полуволны. Отрицательные полуволны диод как бы срезает. В результате такого действия диода переменный ток преобразуется в ток пульсирующий — ток одного направления, но изменяющийся по величине с частотой пропускаемого через него тока. Этот преобразовательных процесс, называемый выпрямлением переменного тока, лежит в основе детектирования принятых радиосигналов.
Рис. 44.Диод преобразует переменный ток в пульсирующий
Посмотри на графики, показанные на рис. 45. Они иллюстрируют процессы, происходящие в знакомой тебе детекторной цепи простейшего приемника.
Рис. 45.Графики, иллюстрирующие детектирование модулированных колебаний радиочастоты
Под действием радиоволн в контуре приемника возбуждаются модулированные колебания радиочастоты (рис. 45, а). К контуру подключена цепь, состоящая из диода и телефонов. Для этой цепи колебательный контур является источником переменного тока радиочастоты. Поскольку диод пропускает ток только одного направления, то модулированные колебания радиочастоты, поступающие в его цепь, будут им выпрямлены (рис. 45, б), или, говоря иначе, продетектированы. Если провести штриховую линию, огибающую вершины выпрямленного тока, то получится «рисунок» тока звуковой частоты, которым модулирован ток, поступающий в антенну радиостанции во время передачи.
Ток, получившийся в результате детектирования состоит из импульсов радиочастоты, амплитуды которых изменяются со звуковой частотой. Его можно рассматривать как суммарный ток и разложить на две составляющие: высокочастотную и низкочастотную. Их называют соответственно высокочастотной и составляющей звуковой частоты пульсирующего тока. В простейшем приемнике составляющая звуковой частоты идет через телефоны и преобразуется ими в звук.