А как быть, если нет хлорного железа? В таком случае можно плату сделать под печатный монтаж, пользуясь ножом-резаком, о котором я уже говорил тебе в этой беседе. Плату такого же однотранзисторного усилителя ты видишь на рис. 149, б. Компоновка деталей на ней такая же, как на плате рис. 149, а, но токонесущие проводники образуют не фигурные, а прямоугольные полоски фольги, отделенные одна от другой прорезями в фольге.
Рис. 149.Печатный монтаж
При печатном монтаже такие детали, как резисторы, транзисторы, конденсаторы, должны монтироваться на плате жестко; они должны быть плотно прижаты к плате или их проволочные выводы должны быть предварительно отформованы — изогнуты наподобие ступенек, исключающих продольное смещение. Некоторые приемы монтажа таких деталей показаны на рис. 149, в. Это необходимо для того, чтобы при нажатии на деталь сверху тонкие проводники из фольги не могли отслаиваться от платы и разрываться.
Монтаж некоторых конструкций, о которых я еще буду рассказывать, выполнен печатным методом. Но это не значит, что только так должно быть. Монтаж тех же конструкций может быть проволочным.
Надежная работа конструируемой радиоаппаратуры зависит не только от качества используемых в ней транзисторов, но и от соблюдения правил их монтажа.
Выводы транзисторов перед монтажом выпрямляют, зачищают от окислов, залуживают, изгибают по определенной форме (формуют) и, если надо, укорачивают. При этом вывод у корпуса придерживают пинцетом или плоскогубцами, чтобы на обломить. Изгиб проволочных выводов маломощных транзисторов допустим с радиусом 1,5–2 мм на расстоянии не менее 3 мм от корпуса с обязательным придерживанием у корпуса пинцетом или плоскогубцами, чтобы не выкрошить стеклянные изоляторы. Выводы транзисторов не рекомендуется укорачивать более чем до 15 мм.
Необходимо помнить, что транзисторы, как, впрочем, и все полупроводниковые приборы, чувствительны к перегреву, а перегрев влияет на изменение их параметров. Поэтому припаивать выводы транзисторов надо паяльником мощностью не более 40 Вт. Для улучшения отвода тепла от транзистора во время пайки его выводы придерживают пинцетом или плоскогубцами, выполняющими функцию дополнительного теплоотвода. Процесс пайки должен быть кратковременным не более 3–5 с, а повторную пайку того же соединения (если, конечно, в этом есть необходимость) следует проводить не ранее, чем через 2–3 мин.
Пробивное напряжение р-n переходов многих маломощных биполярных и полевых транзисторов измеряемся единицами вольта и даже меньше. И если рабочая часть паяльника имеет недостаточную изоляцию от нагревательной обмотки, то он может стать причиной порчи транзистора. Поэтому при монтаже транзисторов желательно пользоваться низковольтным паяльником, питая его от понижающего трансформатора и, кроме того, заземляя корпус паяльника снаружи.
При монтаже полевых транзисторов не следует забывать и о возможности пробоя их статическим электричеством и даже напряжением наводок. Электрический заряд, возникший на твоем теле, если ты стоишь на полу, непроводящем ток, может в момент прикосновения к транзистору создать электрический импульс, достаточный для вывода транзистора из строя. Поэтому при монтаже полевых транзисторов особенно желательно пользоваться низковольтным паяльником, его жало следует заземлять и перед пайкой замыкать накоротко все выводы отрезком оголенного провода. Полезно, кроме того, перед монтажом и во время монтажа полевых транзисторов самому радиолюбителю периодически «разряжаться», касаясь рукой заземления на несколько секунд.
Вообще же электрический паяльник, который будет постоянным рабочим инструментом во всех твоих радиомонтажных делах, может причинить неприятность не только транзистору или другому полупроводниковому прибору, но и лично тебе, если один из его токонесущих проводов или нагревательный элемент окажется соединенным с металлическим корпусом. Пользоваться таким паяльником опасно — можно попасть под высокое напряжение электроосветительной сети. Поэтому время от времени проверяй с помощью омметра, не появился ли электрический контакт между корпусом и штепсельной вилкой на конце шнура питания паяльника.
Постарайся приобрести низковольтный паяльник, например типа ПСН 25–36. Правда, для его питания потребуется трансформатор, понижающий напряжение сети до 25–36 В. Зато монтаж таким паяльником безопасен и для элементов радиоаппаратуры, и для тебя.
* * *
Продолжительной оказалась наша беседа о твоей мастерской. Но и она не охватила всех советов, связанных с технологией изготовления разных деталей, практикой монтажа аппаратуры, приборов. Постараюсь восполнить упущенное применительно к конкретным конструкциям.
Беседа 10МИКРОФОНЫ, ЗВУКОСНИМАТЕЛИ, ЭЛЕКТРОДИНАМИЧЕСКИЕ ГОЛОВКИ
После детекторного и однотранзисторного приемников ты начнешь (а может быть, уже начал) конструировать усилители 3Ч и более сложные приемники, позволяющие слушать радиопередачи не на головные телефоны, а на электродинамическую головку прямого излучения.
Усилитель 3Ч можно использовать для усиления речи, например для радиоузла. Первым звеном такого радиотехнического устройства будет микрофон, а конечным — громкоговорители.
Для громкого воспроизведения грамзаписи тебе помимо усилителя 3Ч потребуется еще звукосниматель — прибор, с помощью которого записанный на грампластинке звук преобразуется в электрические колебания звуковой частоты. Конечным звеном этого устройства также будет электродинамическая головка прямого излучения.
Познакомься с устройством и принципом работы этих приборов.
Ты уже знаешь, что микрофон является преобразователем звуковых колебаний воздуха в электрические колебания, которые могут быть усилены, а затем преобразованы снова в звук.
Самый простой и самый старейший микрофон — угольный. Внешний вид некоторых малогабаритных угольных микрофонов показан на рис. 150. Это так называемые микрофонные капсюли типов МК-10 и МК-59, особенно широко используемые в телефонии.
Рис. 150.Угольные микрофоны
Устройство угольного микрофона в упрощенном виде, принцип его действия и графики, иллюстрирующие его работу, изображены на рис. 151.
Рис. 151.Работа угольного микрофона
Такой микрофон представляет собой металлическую коробку с угольным порошком, которую прикрывает гибкая металлическая или угольная пластинка-мембрана. Мембрана изолирована от коробки. Ток между ними может проходить только через угольный порошок. Источником тока является батарея GB. Пока перед микрофоном не говорят, мембрана находится в спокойном состоянии (рис. 151, а), в цепи микрофона, образованной батареей и угольным порошком, течет ток Iмк. Значение его зависит главным образом от сопротивления угольного порошка и определяется плотностью прилегания его частиц. Но вот перед микрофоном начали говорить. Под действием звуковых волн мембрана стала колебаться, то прогибаясь внутрь коробки (рис. 151, б), то выгибаясь наружу (рис. 151, в). Колеблясь, мембрана то уплотняет частицы угольного порошка, отчего его сопротивление уменьшается, то расслабляет контакты между ними, отчего сопротивление микрофонной цепи увеличивается. А если изменяется сопротивление микрофонной цепи, то (по закону Ома) изменяется и ток в ней.
Пока перед микрофоном не говорили, ток в его цепи был постоянным. Как только начали говорить, ток стал пульсировать с частотой звуковых колебаний. Микрофон, следовательно, преобразовал звуковые колебания воздуха в электрические колебания звуковой частоты. Если в микрофонную цепь включить электромагнитный телефон, то электрические колебания будут преобразованы им в звуковые колебания.
Ток звуковой частоты в микрофонной цепи образуют две его составляющие — постоянная, соответствующая среднему значению тока в цепи, и переменная, соответствующая амплитудным значениям колебаний тока, созданных микрофоном. В телефонии и в радиотехнических устройствах по проводам передают обычно только переменную составляющую, а постоянную, выполнившую свою задачу, как правило, замыкают в очень короткой микрофонной цепи.
Такое разделение тока звуковой частоты на его составляющие можно осуществить, например, с помощью трансформатора, что и иллюстрирует рис. 152.
Рис. 152.Разделение тока цепи микрофона на его составляющие
Здесь микрофон В1, источник тока GB и обмотка I трансформатора Т образуют первичную микрофонную цепь, а обмотка II трансформатора и телефон В2 — вторичную. В первичной цепи течет ток, пульсирующий в такт со звуковыми колебаниями воздуха перед микрофоном. Колебания этого тока индуцируют в обмотке II трансформатора переменное напряжение звуковой частоты, которое заставляет телефон звучать.
Именно так, между прочим, и передается разговор по проводам в телефонии. Но напряжение с обмотки II трансформатора можно подать на вход усилителя 3Ч, чтобы усилить его, а затем преобразовать в звук. Так именно и делают при усилении речи. Если в твоем хозяйстве найдется угольный микрофон и какой-либо повышающий трансформатор, а головные телефоны у тебя, надеюсь, есть, ты сможешь все то, о чем я сейчас рассказывал, проверить на опыте.
Для усиления речи в аппаратуре звукозаписи используются главным образом электродинамические микрофоны, например микрофоны МД-42, МД-47, внешний вид которых показан на рис. 153.
Рис. 153.Внешний вид микрофонов МД-42, МД-47 и устройство электродинамического микрофона
Микрофон электродинамической системы имеет сильный постоянный магнит 2, напоминающий толстостенный стакан, с круглым сердечником керном 3 в середине. Такой магнит, если разрезать его вдоль, похож на букву Ш. К стороне, противоположной «дну» магнита, прикреплен фланец