Зачем мы бежим, или Как догнать свою антилопу. Новый взгляд на эволюцию человека — страница 16 из 46

Чему могут научить нас насекомые? Это настолько далекие от нас создания, что они могли бы возникнуть на другой планете. У них нет мозга в нашем понимании слова. Вместо этого у них цепочки нейронных кластеров разного размера. У них нет сосудов, печени, костей, легких, почек. У них совершенно иной набор гормонов. За исключением пустынных цикад, активных в летний полдень, насекомые не потеют, чтобы уменьшить температуру тела. Их «скелет» находится снаружи, а не внутри тела. У них нет гемоглобина, потому что в отличие от нас они не используют кровь для транспортировки кислорода. Для этого у них есть маленькие трубочки, называемые трахеями, которые связывают расположенные снаружи дыхальца с клетками, минуя всякую промежуточную систему кровообращения. Тем не менее, несмотря на огромные физиологические различия, они решают те же проблемы, что и мы, и по ряду показателей это самые успешные существа на планете.

Я довольно хорошо разбирался в бражниках. Джордж Бартоломью и Франц Энгельманн, мои консультанты по работе над диссертацией в Калифорнийском университете в Лос-Анджелесе, обратили мое внимание на одну публикацию. В ней высказывалось предположение, что эти крупные насекомые могут регулировать температуру тела в полете – то есть поддерживать ее постоянной независимо от перепадов температуры внешней среды. Поскольку они летают по ночам и не могут греться на солнце подобно ящерицам и бабочкам, казалось, что дело в их метаболизме. Никто не знал, как им это удается и что вообще с ними происходит. Дело явно было в движении, и мои данные о мотыльках вскоре позволили связать их терморегуляцию с выносливостью в полете.


Бражник в процессе питания


Куколка бражника


В отличие от бабочек и пчел, бражники вечно передвигаются в поисках пищи. Подобно колибри, они порхают и перелетают от цветка к цветку, не приземляясь на них. Их тельце теплое только перед и во время полета. В отличие от колибри, после того как мотылек останавливается и приземляется, его тело тут же прекращает вырабатывать тепло. За одну-две минуты температура его тела остывает, по сути, до температуры воздуха.

Выделение тепла в атмосферу легче всего объяснить с помощью аналогии. Тепло тела, выделенное в воздух в процессе конвекции, подобно краске, вытекающей в воду из матерчатого мешка. Скорость распространения краски в воде зависит от градиента в зоне стыка сумки и воды. В конце, когда цвет внутри сумки сольется с внешним (то есть когда они достигнут одинаковой температуры), конвекция прекращается. Если мы поместим проницаемую сумку с краской (то есть с теплом) в стремительный водный поток (например, на ветер), то скорость потери краски (то есть охлаждение) значительно ускоряется, потому что ближайшие к сумке слои краски быстро вымываются, поддерживая цветовой градиент. Однако мы не остываем совершенно пассивно. Мы активно направляем тепло из глубины нашего тела к коже, чтобы поддержать более высокую температуру. Кроме того, мы потеем, что позволяет нам терять тепло вопреки разнице температур в том случае, если внешняя температура выше внутренней.

Как и нам, мотылькам требуется много внутреннего тепла, чтобы энергично двигаться. Когда температура окружающей среды низкая, они разогревают мышцы перед полетом специальным упражнением – медленно ускоряющейся дрожью летательных мышц. Впрочем, при низкой температуре они не производят больше тепла в полете, чем при высокой. Когда мы бегаем на холоде, наши мышцы ног тоже не дрожат на бегу. В движении мы повышаем метаболизм нашего тела с 1,5 до 30 ккал в минуту, но мы не можем остановить выработку тепла. Это неизбежный побочный эффект активности, даже если мы бегаем в жаркий день. Производство тепла и движение неразрывно связаны друг с другом. Мы, люди, можем производить меньше тепла, снизив темп, но этот способ не очень подходит бражнику: он вынужден тратить огромные объемы энергии, порхая в поисках еды. Короче говоря, выработка тепла у мотыльков оказалась побочным эффектом расходования энергии в полете. Тем не менее парадоксально, что температура тела насекомого в полете оставалась постоянной в необыкновенно большом спектре атмосферных температур, где пассивная потеря тепла должна была сильно варьироваться. Как им удается поддерживать температуру тела на постоянной высоте в условиях большого разнообразия окружающей среды при таком разном уровне пассивной конвекции?

Не имея возможности снизить выработку тепла при перегреве во время бега, мы вместо этого потеем, чтобы избавиться от избыточного тепла. Таким образом, мы можем продолжать бежать и вырабатывать еще больше тепла без перегрева до тех пор, пока у нас достаточно жидкости для потоотделения. Я не обнаружил пота у мотыльков, но они все же стабилизировали температуру тела. Как они сохраняли тепло при низких температурах, было ясно, но как они охлаждались при высоких температурах? Как избавиться от лишнего тепла, чтобы стабилизировать температуру мышц и продолжить полет на жаре? Чтобы выяснить это, я провел ряд экспериментов, которые доказали наличие у бражников уникального биологического механизма. Они отводят тепло из груди в обычно остающееся прохладным брюшко, используя кровь в качестве теплоносителя. Ветер, обдувающий слабо термоизолированное брюшко, охлаждает его путем конвекции. Это так называемое конвективное охлаждение из брюшной полости аналогично охлаждению автомобиля, в котором тепло рассеивается радиатором после того, как передается от двигателя с помощью охлаждающей жидкости.

«Брюшной радиатор» мотылька может оберегать насекомое от перегрева во время непрерывного полета даже при температуре воздуха 30 °C (86 °F). Однако я сократил продолжительность его полета до двух-трех минут, сделав операцию, эквивалентную пережиманию шланга радиатора автомобиля, и отсоединив их сердечно-сосудистую структуру, которая перекачивает кровь. Мотыльки потеряли способность переносить тепло в брюшко; температура грудной клетки повысилась, а брюшко осталось прохладным. Температура грудных мышц, управляющих крыльями прооперированных бабочек, резко поднялась до недопустимо высокой температуры 44–45 °C (111–113 °F), и как марафонцы, у которых закончилась вода для испарительного охлаждения, насекомые падали на землю с тепловым ударом. Я знал, что перегрев, а не отказ органов, качающих кровь, был причиной ограниченной выносливости бабочек в полете. Если я удалял «шубу», прикрывающую их «двигатель»-грудь, чтобы они могли пассивно терять больше тепла, бабочки хорошо летали, несмотря на операцию на сердце. Может показаться странным, что бражникам требуется удерживающий тепло мех на груди. Толстый мех действительно является помехой во время полета при высоких температурах, но он полезен при низких температурах, когда насекомые сталкиваются с противоположной проблемой.

Меня удивили и обрадовали эти и другие результаты по той же теме, и я опубликовал пять работ, три из них – в престижном журнале Science. Вскоре последовал шквал других публикаций, показывающих, что физическая выносливость у различных млекопитающих также ограничена перегревом. Кролики, красные кенгуру и гепарды – все покрыты шерстью, чтобы согреться, но все они перегреваются до того, что вынуждены прекращать бег даже при умеренной жаре. Люди, однако, благодаря превосходному потоотделению поразительно выносливы при беге в жару.

Проблема, связанная с тем, что иногда приходится сохранять тепло для физической активности, а иногда – избавляться от него для ее продолжения, также связана с точной синхронизацией дыхательного цикла с кровообращением. Как я объясню далее, дыхание влияет на ток крови и охлаждение, что придает некоторым насекомым выносливость в жару.

Перед тем как рассказать об элегантных решениях у насекомых, вроде тех, которые мы обнаружили в шмелях, нужно вернуться назад и пересмотреть некоторые основы. Во-первых, у пчел брюшко прикрепляется к грудной клетке лишь крошечной, узкой талией – петиолем. Все тепло, количество которого у летящей пчелы в несколько сотен раз превышает количества тепла в состоянии покоя (точное количество зависит от той температуры тела, при которой фиксируется базальный метаболизм – сравнивать нужно именно с этим), вырабатывается летательными мышцами, покрывающими грудную клетку. У насекомых нет мышц в крыльях – все мышцы, которые управляют крыльями, находятся внутри самого тела. Температура брюшка обычно близка к температуре воздуха, если только, как у мотыльков, оно не используется в качестве радиатора, выводящего избыток тепла в грудной клетке.

Летательная мускулатура абсолютно аэробна; как и бегуны на дальние дистанции, пчелы не впадают в «кислородный долг», характерный для спринтеров. Их высокий VO2max достигается с помощью воздушных мешков в брюшке. Оно работает как поршень, сжимая и расширяя воздушные мешки положительным и отрицательным давлением. Те же перепады давления, при которых воздух поступает в грудную клетку и выходит из нее, также используются для перекачивания крови, и эта кровь может использоваться или не использоваться для теплообмена. Когда кровь используется для удаления избыточного тепла из грудных мышц, вентральная диафрагма дискретной пульсацией высвобождает ток горячей крови в брюшко, а более холодная кровь, поступающая в грудь из брюшка, также «разрезается» на дискретные импульсы. Горячие и холодные импульсы крови не сталкиваются, потому что они попеременно отводятся через черешок, синхронно с движением брюшного дыхания внутрь и наружу. Поэтому я назвал этот процесс «переменным» потоком жидкости, чтобы отличить его от тока крови, идущего одновременно в противоположных направлениях в соседних сосудах: это так называемый «противоточный» поток.

Когда пчелы летают при низких температурах воздуха или же с большими перерывами (например, обрабатывая цветы), у них возникает обратная проблема – нужно сохранять тепло в грудной клетке. В этой ситуации кровоток между грудью и брюшком значительно снижается, и дыхательные движения больше не влияют на движение крови. Вместо этого сердце фибриллирует и пропускает в грудную клетку медленный, тонкий поток крови. Этот механизм способствует рекуперации тепла обратно в грудную клетку, которое в противном случае было бы потеряно в брюшной полости из-за противотока.