гих минералов, имеющихся и на Земле.
Но каким образом это гигантское облако превращается в звезды и планеты? Прежде всего следует заметить, что межзвездные облака неоднородны: они хаотичны, и в одних областях содержится больше материи, чем в других. Эти плотные области — сами по себе или из-за какого-то внешнего фактора — начинают притягивать к себе материал из других мест. Как только процесс гравитационного притяжения начался, он делается самоподдерживающимся: чем плотнее становится центральная область, тем сильнее притяжение. Вскоре какая-то часть рассеянного облака превращается в очень плотное и очень горячее центральное тело — будущую звезду, вокруг которой вращается диск из оставшегося более холодного вещества — материала для формирования планет. Межзвездные облака так велики, что даже из одной их части может образоваться сразу несколько звездных систем.
Данные, полученные из некоторых метеоритов, позволяют предположить, что спусковым крючком для гравитационного коллапса, который привел к формированию нашей Солнечной системы, была вспышка недалекой сверхновой. Сверхновые — это взрывающиеся звезды, и, хотя астрономы выделяют несколько их типов, все они гораздо крупнее Солнца. Когда у массивной звезды заканчивается топливо в ядре, происходит катастрофа: центральная область нагревается до такой высокой температуры и сжимается до такого высокого давления, что в результате термоядерной реакции происходит гигантский взрыв, который буквально разрывает звезду на части и выбрасывает ее внешние слои в космос. Этот взрыв также порождает гигантские ударные волны, распространяющиеся наружу: они могут сжимать достаточно плотные части межзвездного облака и запускать процесс формирования звезд и планет.
По оценкам астрономов, во Вселенной примерно каждую секунду происходит взрыв сверхновой. Даже если вы читаете достаточно быстро, с момента, как вы начали читать этот абзац, во Вселенной взорвалось примерно полдюжины сверхновых. Однако Вселенная обширна, и даже при таком их количестве взрывы сверхновых в окрестностях Солнечной системы относительно редки. Последний случай, когда взрыв был виден невооруженным взглядом (но при этом происходил все равно очень далеко), произошел в 1604 году. Когда сверхновые появляются, они внезапно загораются на небе, словно новые звезды, затем ярко светятся несколько недель или месяцев, а после постепенно исчезают. Китайские астрономы фиксировали появление сверхновых почти две тысячи лет назад (хотя они и не представляли, что это такое).
Всплеск энергии, сопровождающий взрыв сверхновой, запускает ядерные реакции, которые создают множество радиоактивных изотопов. Они, как и другое вещество взорвавшейся звезды, выбрасываются в космос. Физики-ядерщики детально рассчитали, какие изотопы и в каких количествах производятся при таких взрывах. Примечательно, что минеральные зерна в некоторых хондритах содержат следы этих изотопов. Эти зерна, которые (как указывают другие факты) сформировались в диске вокруг зарождающегося Солнца, очевидно, по мере своего роста захватили материал сверхновой. Некоторые радиоактивные изотопы, которые они содержат, распадаются так быстро, что их бы не наблюдалось (они бы полностью распались), если бы между взрывом и образованием минералов прошло больше нескольких миллионов лет. Метеориты говорят, что недалекий взрыв сверхновой выбросил свои продукты в газопылевое облако незадолго до того, как начала формироваться Солнечная система. Возможно (и даже вероятно), что ударная волна от этого взрыва стала спусковым механизмом для гравитационного коллапса, который быстро привел к образованию нашего Солнца, хондритов, планет и в конечном итоге нас самих.
Компьютерное моделирование показывает, что как только в какой-то части межзвездного облака начинается коллапс, то стремительно формируется плоский вращающийся диск материи с протозвездой (в нашем случае с протосолнцем) в центре. Когда материя, окружающая протозвезду, начинает сжиматься в диск, она нагревается до высоких температур — настолько высоких, что из межзвездного облака испаряются все или почти все пылевые частицы. Наблюдения подтверждают эти теоретические выкладки: астрономы обнаружили диски из газа и твердых частиц, окружающих формирующиеся звезды, а исследования хондритов показывают, что многие их минеральные составляющие выпали в осадок из горячего вещества диска при его охлаждении. В метеоритах удавалось обнаружить лишь незначительное количество неизмененных пылевых частиц, оставшихся от межзвездного облака.
Имеются некоторые наблюдения, которые помогают нам разобраться в процессах, превративших протосолнце и окружающий его горячий диск в современную Солнечную систему; однако большей частью мы вынуждены полагаться на компьютерное моделирование. Далее идет очень краткое описание того, как ученые представляют себе этот процесс. Сначала (это один из самых надежных фактов во всей истории) протосолнце поглотило почти всю окружающую материю и стало в достаточной степени плотным и горячим, чтобы внутри него пошли реакции ядерного синтеза. Это было настоящее рождение нашего Солнца: реакция превращения водорода (преобладающего элемента в химическом составе Солнца) в гелий была и остается основным источником его энергии. Солнце содержит 99,9 % всего вещества в Солнечной системе, однако оставшегося материала хватило, чтобы появились все остальные ее обитатели — планеты, их спутники, астероиды и кометы.
Когда диск вокруг юного Солнца остыл, из газов начали выпадать минеральные зерна, а по мере увеличения их количества они стали сталкиваться друг с другом, двигаясь по своим орбитам вокруг Солнца. Компьютерное моделирование показывает, что при столкновении мелкие зерна обычно слипаются, а потому средний размер объектов в диске быстро увеличивался. Вскоре большая часть мелких зерен превратилась в камни — вероятно, размером от кулака до валуна. Однако путь от валунов до планеты размером с Землю непрост: сталкивающиеся валуны будут скорее разваливаться, чем слипаться, а оставшийся в диске газ создает сопротивление, которой замедляет движение этих тел по орбитам и заставляет их приближаться по спирали к Солнцу — в итоге они станут не планетами, а частью звезды. Недавние исследования предполагают, что важную роль в соединении камней в более крупные тела сыграла турбулентность в диске: кружащиеся тела размером с валун соединялись в кластеры без сильных столкновений. Когда такие кластеры становятся достаточно большими, гравитация объединяет их в «планетезимали» — слабо связанные тела, являющиеся предшественниками планет; их размер, возможно, составлял несколько сотен километров в поперечнике.
По современным оценкам, переход от газопылевого облака к первобытному Солнцу, окруженному планетезималями, занял примерно 10 миллионов лет. По мере того как планетезимали продолжали расти, собирая все больше материи из окружающего пространства, самые крупные из них обгоняли соседей и забирали себе все вокруг. Постоянный дождь из камешков, валунов и планетезималей, падающих на поверхность растущих планет, быстро нагревал их, и внешние части некоторых из них могли полностью расплавиться.
В этом хаотичном жестком процессе быстро росла и Земля, впоследствии ставшая самой крупной из внутренних планет. Она тоже нагревалась, поскольку падающие тела передавали ей свою энергию. Наша планета стала настолько горячей, что железо в накопленном материале (вспомните, что хондриты содержат массу зерен железа) начало плавиться. Будучи очень плотным, жидкий металл стал погружаться и образовал ядро Земли. Существует масса геохимических данных (они слишком обширны, чтобы излагать здесь подробно, и многие из них были получены за последние несколько десятилетий), которые подтверждают, что металлическое ядро сформировалось на самой ранней стадии жизни Земли, когда планета еще росла. Сегодня, спустя 4,5 миллиарда лет, железное ядро все еще частично расплавлено — это пережиток того первого высокотемпературного отрезка времени. Аналогичным образом железное ядро появилось и у других планет земной группы, а также у планетезималей, которые стали астероидами, а не планетами. Железные метеориты вроде Мыса Йорк — это, вероятно, фрагменты таких ядер, полетевших к Земле после того, как их родительские астероиды столкнулись с другими. Эти железные метеориты рассказывают нам, на что похоже ядро нашей собственной планеты.
Но когда Земля уже почти достигла нынешнего размера и образовала железное ядро, в ее формировании была написана еще одна важная глава. Удивительно, но узнать об этом событии мы смогли, задавая вопросы о Луне, а именно: почему плотность нашей соседки так сильно отличается от плотности Земли? И если Луна — всего лишь блуждающая планетезималь, захваченная Землей (эта теория появления Луны была некогда популярной), то почему анализ горных пород, привезенных с Луны астронавтами «Аполлона», показывает, что наш спутник имеет близкое геохимическое сходство с Землей? На эти и другие вопросы о происхождении нашего спутника ответила гипотеза ударного формирования Луны. Впервые она появилась в 1970-е годы, когда опубликовали данные анализа лунных пород, но с тех пор ее уточняли и подтверждали новыми фактами.
В основе ударной модели лежит предположение, что к концу формирования планет в Солнечной системе в Землю врезалось крупное тело размером примерно с Марс. Это столкновение выбросило в космос материал, который от энергии удара частично перешел в газообразное состояние, но в итоге охладился и образовал Луну. Эта гипотетическая ударившая планета получила название Тейя — в честь древнегреческого божества, матери Селены (богини Луны).
Гипотеза ударного формирования сейчас является наиболее правдоподобным объяснением возникновения нашего спутника. Данные изотопных исследований для земных и лунных пород показывают, что столкновение должно было произойти примерно через 40–60 миллионов лет после рождения Солнечной системы. К тому времени большая часть земного железа уже осела в ядре, и, скорее всего, тот же процесс произошел и в ударившем теле. По этой причине материал, вылетевший в космос, должен был состоять только из внешних, каменистых частей обоих тел: моделирование столкновения показывает, что плотное металлическое ядро Тейи могло пройти через внешнюю оболочку Земли и слиться с ядром нашей планеты. Такой сценарий полностью соответствует низкому содержанию железа на Луне и, как следствие, ее низкой плотности.