[25].
Но есть ли какие-нибудь другие подтверждения? Ответ однозначный: да. Проследив орбиты в прошлое с помощью компьютерного моделирования, как и для семейства Баптистины, исследователи обнаружили, что так называемое семейство Гефьён, вероятно, образовалось в результате распада одного объекта примерно 500 миллионов лет назад. Спектральный анализ показывает, что астероиды этого семейства сходны по составу с L-хондритами, а компьютерное моделирование говорит, что вскоре после столкновения, создавшего семейство Гефьён, Землю должно было засыпать метеоритами, падавшими в 10–100 раз чаще обычного, и некоторые из падающих тел оказывались достаточно велики, чтобы создавать кратеры диаметром в километр и больше. Несмотря на плохую сохранность кратеров этого возраста, нашлось более десятка таких (все больше полутора километров в диаметре), которые датируются интервалом 450–500 миллионов лет назад. Для промежутка времени в 50 миллионов лет это значительное количество, и такой факт подтверждает вывод, что в то время Земля испытывала повышенную плотность бомбардировок.
На рисунке 7 показано общее мнение о рисках опасности ударов, основанное на изучении кратеров и околоземных объектов. Данные показывают, что удар такой силы, который связан с мел-палеогеновой границей, происходит в среднем раз в 150 миллионов лет или около того. Однако более мелкие тела падают чаще. Тела размером с Тунгусский объект сталкиваются с нашей планетой примерно раз в тысячу лет, а астероиды размером с многоэтажный дом (несущиеся на сверхзвуковой скорости) — примерно раз в столетие. Подобно Тунгусскому метеороиду, такие объекты, видимо, взорвутся раньше, чем соприкоснутся с поверхностью, однако это все равно нанесет серьезный ущерб населенным регионам. Стоит помнить, что такие прогнозы основаны на средних значениях, и, хотя вероятность мала, вполне возможно, что новый Тунгусский феномен произойдет завтра или на следующей неделе, а не через тысячу лет. Статистика может вводить в заблуждение, особенно в случае редких событий.
Рисунок 7. Частота столкновений с Землей в зависимости от размеров астероида на основании наблюдений околоземных объектов и земных кратеров (по данным Chapman 2004). Обратите, что на обеих осях используется логарифмическая шкала.
Хотя количественное определение рисков и составление прогнозов — дело важное, в каком-то смысле главное — определить конкретные опасности. Эта логика побудила Конгресс США в 1998 году поручить НАСА составить каталог потенциальных угроз, исходящих из космоса, а позднее, в 2005 году, дать агентству конкретное задание: обнаруживать к 2020 году 90 % всех околоземных объектов размером 140 метров или больше. Свои программы по оцениванию опасностей и изучению методов их ослабления составили также правительство Великобритании и Организация Объединенных Наций. К середине 2010-х годов в список внесли свыше 7000 околоземных объектов (за последнее время ежегодно в список добавляется от 400 до 500 новых тел). Около 800 этих астероидов имеют диаметр больше километра и потенциально могут уничтожить нашу цивилизацию. Однако по современным прогнозам ни один из них не столкнется с Землей. В данный момент в таблице риска столкновений, составленной НАСА, всего лишь один астероид размером в 110 метров находится в категории «нуждается в тщательном наблюдении»; это значит, что он может подойти близко к Земле в течение следующих ста лет (такой временной масштаб используется при изучении потенциальных угроз от околоземных объектов)[26].
Статистические данные по околоземным объектам выглядят обнадеживающе, однако это не повод успокаиваться. Каждый раз телескопы могут наблюдать только небольшие кусочки неба, и многие астероиды — особенно маленькие, но все же потенциально опасные — остаются незамеченными (я упомянул только астероиды, но опасность представляют и кометы; впрочем, на 7 тысяч с лишним околоземных объектов приходятся всего 84 кометы).
При обнаружении нового околоземного объекта установлены четкие процедуры определения его потенциальной опасности. Любой, кто заметит такой объект, может сообщить о своих открытиях в Центр малых планет (ЦМП) в Смитсоновской астрофизической обсерватории в Кембридже (штат Массачусетс). Центр, работающий под эгидой Международного астрономического союза, проверяет и регулярно публикует информацию об идентифицированных околоземных объектах. Две отдельные группы берут данные Центра, вычисляют с помощью компьютерных программ орбиты всех околоземных объектов на следующее столетие и оценивают вероятность столкновения. Сайты этих групп регулярно обновляются, и, если у вас есть паранойя по поводу удара астероида, вы можете заглядывать туда, чтобы узнать последние данные — это Программа околоземных объектов в Лаборатории реактивного движения в Пасадене (штат Калифорния) и Сайт динамики околоземных объектов [NEODyS], которым управляют совместно университеты Пизы (Италия) и Вальядолида (Испания).
Эффективность этих программ показали события октября 2007 года, когда один астроном, работавший рядом с Тусоном (штат Аризона), обнаружил очень маленький объект (размером в несколько метров) и сообщил о нем в Центр малых планет. Первоначальные расчеты показали, что объект столкнется с Землей, и ЦМП немедленно уведомил НАСА и астрономическое сообщество. В течение часа Программа околоземных объектов спрогнозировала, что астероид войдет в атмосферу Земли над Суданом утром следующего дня — всего через двадцать часов после обнаружения. НАСА уведомило различные государственные организации США и выпустило пресс-релиз. Прогноз оказался верным. Метеорит вошел в атмосферу планеты в предсказанное время и взорвался примерно в 40 километрах над поверхностью. Взрыв зафиксировали спутники; его также заметил пилот коммерческой авиакомпании, которого предупредили о приближающемся теле.
Суданский метеорит — не какое-то редкое событие: ежегодно с Землей сталкиваются несколько объектов такого размера. Беспрецедентным было то, что его заметили до удара. Как только о нем стало известно, астрономы всего мира бросились к телескопам и стали вести наблюдения. Их данные потекли в ЦМП и использовались при уточнении траектории астероида в реальном времени. Точная информация о месте событий позволила калифорнийскому астроному Питеру Дженнискенсу вылететь в Судан после удара и быстро найти в пустыне уцелевшие части космического тела. Используя данные слежения от ЦМП, он и группа студентов из университета Хартума прочесали область, где по расчетам должен был упасть метеорит, и нашли массу фрагментов. Это был первый случай, когда на Земле собрали образцы метеорита, обнаруженного еще в космосе. Последующие экспедиции в тот же район довели общее количество найденных обломков до нескольких сотен.
Улучшение отслеживания околоземных объектов означает, что они попадают в заголовки прессы. В марте 2004 года астрономы объявили (а СМИ должным образом рассказали), что скоро произойдет рекордно близкий пролет: через несколько дней астероид размером в 30 метров пройдет мимо Земли на расстоянии всего 42 тысячи километров. Расстояние кажется большим, но в космических масштабах оно ничтожно — лишь чуть-чуть больше, чем окружность нашей планеты и гораздо меньше, чем расстояние до Луны. В реальности близкие пролеты астероидов такого размера происходят регулярно — минимум раз в несколько лет. 2 марта 2009 года другое тело такого же размера прошло мимо нас на примерно вдвое большем расстоянии, чем астероид 2004 года. Такие «маленькие» объекты обычно обнаруживают только при приближении к Земле (если вообще обнаруживают).
Однако позже в 2004 году появились сообщения о гораздо более серьезной угрозе. На основании наблюдений астрономы оценили, что с вероятностью почти 3 % в 2029 году с Землей столкнется довольно крупный астероид, размер которого составляет от 200 до 340 метров — то есть гораздо больше, чем у Тунгусского метеороида. Астероид 99942, получивший название Апофис, попал во все заголовки СМИ. Однако внимание прессы быстро сошло на нет, когда дополнительный анализ показал, что вероятность столкновения оказалась намного ниже, чем давали первоначальные расчеты.
Эта история показывает, как трудно предсказать столкновения с Землей. Хотя мы склонны считать ее очень большой, на самом деле это крошечная мишень в «космическом тире». Обычно крупные околоземные объекты обнаруживают на больших расстояниях (десятки миллионов километров), и их движение фиксируется в течение короткого промежутка времени. Поэтому траекторию движения тела приходится рассчитывать на основании очень небольшого фрагмента орбиты, и даже незначительные погрешности в измерениях — параметров орбиты, массы астероида, параметров его вращения, гравитационного притяжения планет и других астероидов поблизости, а также прочих факторов — могут существенно изменить вычисленное положение астероида через 10, 20 или 100 лет. Кроме того, на орбиту астероида может влиять солнечное излучение, что очень трудно спрогнозировать.
Первые наблюдения в телескоп показали, что Апофис со значительной вероятностью столкнется с Землей в несчастливую пятницу, тринадцатого (13 апреля 2029 года). Однако при прохождении Апофиса в 2014 году элементы орбиты уточнили с помощью радарных наблюдений, и погрешность значительно уменьшилась. Теперь можно уверенно сказать, что астероид не столкнется с нашей планетой. Однако он пройдет весьма близко: минимальное расстояние до астероида будет около 30 тысяч километров, так что если вы случайно окажетесь в нужном месте 13 апреля 2029 года, то сможете увидеть его даже без телескопа.
Поскольку наши возможности обнаруживать околоземные объекты превосходят способности точно вычислять параметры орбиты, то ложных тревог такого рода будет все больше. Но что если новые наблюдения подтвердят пересечение курса Апофиса и орбиты Земли? Можно ли тут что-нибудь сделать? После того, как такую опасность всерьез осознали, проблемой занялась небольшая группа ученых и инженеров. Насколько известно, первое исследование этого вопроса проводили студенты Массачусетского технологического института (МТИ) в 1967 году. Перед ними поставили задачу: не допустить столкновения реального астероида Икар (диаметром примерно один километр) и Земли, если бы им угрожало столкновение (на самом деле это не так, хотя Икар регулярно сближается с Солнцем — отсюда и его название). Студенты предложили для проекта «Икар» решение с помощью грубой силы: отправить к астероиду шесть ракет с ядерными зарядами и взорвать его.