х температур, окутывала нашу планету как изолирующее одеяло, предотвращающее охлаждение. Второй — то, что непрерывная бомбардировка — последняя стадия процесса аккреции (накопления массы планеты) — в течение многих сотен миллионов лет держала поверхность Земли на уровне выше точки кипения воды.
Нет сомнений, что после образования Земля была очень горячей, и что грандиозное столкновение, образовавшее Луну, расплавило часть ее внешних областей или, возможно, даже всю поверхность. Земля до сих пор остывает после этого огненного начала — факт, который мы не часто замечаем, расположившись на поверхности планеты. Но с геологической точки зрения магматический океан начал застывать достаточно быстро. Раскаленная лава, текущая по склонам вулканов, например, гавайского вулкана Килауэа, покрывается коркой почти мгновенно и — в зависимости от мощности потока — может превратиться в холодный камень за срок от нескольких дней до года-двух. Конечно, по сравнению с Килауэа магматический океан огромен, но его поверхность все равно бы затвердела и остыла довольно быстро.
Однако еще долгое время после удара, образовавшего Луну, столкновения с крупными и мелкими телами продолжали добавлять тепловую энергию на поверхность Земли, хотя этот процесс был нерегулярным и в разное время затрагивал разные части нашей планеты. Судя по исследованиям лунных пород и датировке лунных кратеров, бомбардировка, прекратилась около 3,8 миллиарда лет назад. В течение предыдущих 200 миллионов лет (в промежутке между 4 и 3,8 миллиардами лет назад) частота столкновений была крайне высокой — это явление получило название «поздней тяжелой бомбардировки». К этому времени тяготеют крупные окаймленные горами бассейны на Луне (например, легко видимое Море Дождей). По сути эти бассейны — гигантские дыры, пробитые в первоначальной лунной коре упавшими телами; позже их заполнили базальты, поднявшиеся из мантии Луны. Объекты, создавшие такие бассейны, имели диаметр в десятки километров, в то время как дождь обломков, падавших на Землю, должен быть еще сильнее (из-за ее большего размера и потому большего гравитационного притяжения). Хотя такие удары локально плавили бы земную кору и испаряли верхние слои океанов во всем мире, данные кристаллика циркона возрастом 4,4 миллиарда лет показывают, что всего через 150 миллионов лет после начала формирования нашей планеты она сохраняла на поверхности какое-то количество жидкой воды.
Поскольку вода является главным компонентом для жизни, наличие воды на ранних этапах существования Земли немедленно ставит вопрос: когда на планете зародилась жизнь? Самые старые окаменелости — это тонкослойные структуры, которые называются строматолитами (рисунок 10). Эти объекты могут иметь самые разные формы — от простых конусов до крупных ветвящихся колонн, и они являются преобладающим типом окаменелостей во всех осадочных породах, возраст которых превышает 600 миллионов лет. Самые старые строматолиты относятся к одной формации в Западной Австралии, возраст которой составляет чуть более 3,4 миллиарда лет.
Удивительно, но строматолиты образуются до сих пор, хотя и в ограниченном числе мест. Тщательное изучение современных аналогов этих древних окаменелостей дало решающее представление о том, как и где они растут[30]. Сложные слоистые структуры состоят из тонких слоев микробов — колоний одноклеточных бактерий, включающих (по крайней мере у современных экземпляров) фотосинтезирующие цианобактерии, которые действуют как ловушки для осаждающихся зерен. В результате постепенно образуются бугры, купола или колонны. Они растут в теплых мелководных районах по берегам континентов и либо полностью находятся под водой, либо частично оказываются на поверхности во время отливов. По воле судьбы самые старые и самые молодые строматолиты в мире разделены всего несколькими сотнями километров: как и архейские экземпляры, современные строматолиты находятся в Западной Австралии, в заливе Шарк. В 1991 году этот залив был объявлен объектом Всемирного наследия ЮНЕСКО, и, приехав сюда, вы сможете взглянуть на эти странные неровные объекты с удобной смотровой площадки.
Рисунок 10. Слева: крупным планом тонкие слои в изъеденном конусообразном строматолите из Западной Австралии возрастом 3,43 миллиарда лет. Размер показанной области — около 22 сантиметров в поперечнике. (Фото любезно предоставлено Эбигейл Оллвуд). Справа: современные частично торчащие из воды строматолитовые образования, растущие в заливе Шарк в Западной Австралии; март 2005 года. (Фото Пола Харрисона, воспроизводится в соответствии с условиями лицензии свободной документации GNU).
Идентифицировано как минимум семь различных разновидностей ископаемых строматолитов возрастом 3,4 миллиарда лет. Распределение этих разновидностей и пород, с ними связанных, показывает, что они составляли разнообразную экосистему вдоль древней береговой линии, которая впоследствии ушла под воду из-за повышения уровня океана; при этом разные типы строматолитов занимали слегка отличающиеся экологические ниши. Это рисует картину Земли, изобилующей жизнью уже 3,4 миллиарда лет назад, причем возможно — если современные строматолиты являются надежным ориентиром — уже имелись бактерии, которые потребляли углекислый газ и производили кислород с помощью фотосинтеза. Обилие и разнообразие ранних строматолитов заставляет предположить, что жизнь возникла задолго до отметки 3,4 миллиарда лет назад — возможно, еще в катархейском эоне.
Однако от катархея окаменелостей не осталось: все намеки на то, что жизнь могла существовать ранее момента 3,4 миллиарда лет назад, являются косвенными. Самые старые на Земле осадочные породы обнаружены в области Исуа в западной Гренландии и в северном Квебеке: их возраст насчитывает 3,8 миллиарда лет. Эти породы не раз претерпевали метаморфизм, но все еще сохраняют признаки того, что осаждались в воде; в них нет узнаваемых окаменелостей, но гренландские образцы содержат графит — одну из форм чистого углерода. Изотопный анализ этого графита показывает, что такой состав характерен для биологического углерода, а это заставляет предположить, что он образовался в живых организмах. Если самые старые известные осадочные породы содержат «химические окаменелости», свидетельствующие о жизни, то вполне вероятно, что наша планета была заселена с самого начала своей истории.
Однако есть и критики. Они не ставят под сомнение изотопный анализ гренландских образцов, где углерод четко демонстрирует биологическое происхождение, но указывают, что этот графит встречается в крайне малых количествах, и что его предшественник — биологический углерод — мог появиться гораздо позже образования горных пород — возможно, во время одного из метаморфических преобразований. Но если мы согласимся с тем, что частицы графита в самом деле произведены организмами, населявшими океан 3,8 миллиарда лет назад, это не должно особенно сильно поражать. Все важные для жизни химические элементы присутствовали на Земле с самого начала, и в их распоряжении имелись сотни миллионов лет, чтобы прореагировать всеми возможными способами. В первобытном океане создавались и трансформировались различные молекулы и соединения, и когда появились те из них, которые могли самопроизвольно воспроизводить себя, эволюция форм жизни стала практически неизбежной.
Решающий шаг — способность молекулы воспроизводить себя — недавно был продемонстрирован в лабораторных экспериментах с искусственно созданными молекулами РНК (рибонуклеиновой кислоты), проведенных в научно-исследовательском институте Скриппса в Калифорнии. Эти сконструированные молекулы могут самовоспроизводиться быстро и практически бесконечно. Еще интереснее то, что разные молекулы РНК «конкурируют» друг с другом, если их объединяют в одном эксперименте: те, что воспроизводятся быстрее всего, будут наиболее «успешными» в захвате среды. Хотя молекулы в этом эксперименте самовоспроизводятся, они не могут развиваться и не являются живыми организмами. Однако их поведение дает представление о процессах, которые могли быть предвестниками возникновения жизни на Земле.
Бактерии, ответственные за самые ранние окаменелости (строматолиты), были примитивными в том смысле, что являлись одноклеточными организмами без выделенного ядра и с немногочисленными внутренними структурами. Вместе с другой группой микроорганизмов, называемых археями, они были единственными живыми существами на планете на протяжении большей части первых двух миллиардов лет существовании Земли. И археи, и бактерии по-прежнему многочисленны. Чтобы увидеть их, понадобится микроскоп, но их так много, что если вы сложите их массу, то обнаружите, что они составляют значительную часть всего живого на планете.
Привычные нам растения и животные состоят из гораздо более сложных клеток, нежели клетки первых одноклеточных организмов. Основная разница в том, что у них есть выделенное ядро, в котором происходят многие жизненно важные процессы клетки. Организмы из таких клеток (включая нас) называются эукариотами. Первая однозначная фиксация эукариотических клеток в геологической летописи относится к породам протерозойского эона, но, вероятно, они возникли намного раньше. Как и свидетельства ранней жизни в гренландских породах, намеки на первых эукариотов получены не от окаменелостей, а от химических индикаторов. Биологические соединения, характерные для эукариотических клеток, обнаружены в осадочных породах, возраст которых составляет 2,7 миллиарда лет.
Эти молекулы, называемые биомаркерами, прочны и разрушаются с трудом. Поэтому, если только они не оказались в осадочных породах позднее — естественным путем или в результате загрязнения во время обработки (ученые, сделавшие это открытие, скрупулезно старались оценить и исключить эту возможность), то они являются четким сигналом того, что к концу архейского эона к археям и бактериям в океанах присоединились эукариоты.