Зачем нужна геология: краткая история прошлого и будущего нашей планеты — страница 20 из 62

состояния отличались не только тогдашние океаны и атмосфера. Другой была и суша — особенно природа и рельеф континентов. Найти подтверждения этому еще труднее, чем в случае атмосферы. Некоторые подсказки можно отыскать в тектоническом движении плит — основном геологическом процессе, влияющем сегодня на континенты.

Сохранившихся фрагментов древнейшей континентальной коры Земли немного, они невелики по размеру и сильно метаморфизированы, однако встречаются на всех континентах (карту, показывающую их распределение, см. на рисунке 20). Большинство таких анклавов древней коры содержат породы, в целом похожие на гранит. Мы уже видели, что самое старое на Земле зерно минерала — кристаллик циркона возрастом 4,4 миллиарда лет из Западной Австралии — образовалось внутри какой-то гранитоподобной породы. Сегодня образование гранита тесно связано с тектоникой плит, а значит, это можно считать косвенным подтверждением того, что этот процесс действовал со времен катархейского эона. Когда именно началась современная тектоника плит, вопрос спорный, и мнения геофизиков тут расходятся, однако большинство соглашается, что такой процесс работал к концу архейского эона 2,5 миллиарда лет, а может быть, и раньше. Последние исследования показывают признаки того, что тектоника плит (или, по крайней мере, нечто близкое к современной тектонике) играла определенную роль в формировании поверхности Земли более трех миллиардов лет назад, а возможно, еще раньше в катархее.

Каким образом ранняя тектоника плит формировала поверхность нашей планеты? Были ли тогда горы и долины, сходные с сегодняшними, или все было совсем иначе? К сожалению, геологическая летопись не помогает понять древний рельеф: отчасти потому, что от того времени осталось мало фрагментов коры, отчасти потому, что дожившие до наших дней породы просто не содержат никаких намеков на формы поверхности Земли — или, по крайней мере, геофизики пока ничего не смогли расшифровать. Однако кое-что можно вывести из теоретических соображений и геофизического моделирования. Например, мы знаем, что во время катархейского и архейского эонов Земля была намного горячее, чем сегодня — как из-за своего бурного рождения, сопровождаемого теплом, так и вследствие природного распада радиоактивных изотопов (со временем тепло радиоактивного распада уменьшается по мере радиоактивного распада). Моделирование показывает, что в условиях более высокой температуры литосфера — твердая наружная оболочка Земли — была гораздо менее прочной, чем сейчас.

Менее прочная литосфера не могла бы удержать крупные горные системы вроде Гималаев и Анд. Вероятно, наша планета была более плоской, чем сегодня: горы поднимались на километр-полтора, это меньше высоты Денвера[31]. Сглаженный рельеф означает, что эрозия (которая сильнее всего в регионах с высоким рельефом), возможно, не так активно, как сегодня, разрушала вулканические породы небольших существовавших континентов и преобразовывала их в осадочные породы. Однако частично это могло уравновешиваться повышенным уровнем углекислого газа в атмосфере: из-за него увеличивался уровень кислотных осадков, что приводило к более интенсивному разрушению поверхностных пород.

Несомненно, вы обратили внимание, что в этой главе часто использовались слова «возможно», «вероятно», «может быть». Дело в том, что трудно сказать что-то определенное об условиях и событиях, имевших место миллиарды лет назад. Чем ближе к настоящему, тем более ясны геологические свидетельства. И хотя о катархейском и архейском эонах мы многого не знаем, я надеюсь, эта глава прояснила для вас то, что нам все-таки известно. Сведения, хранимые в горных породах, вкупе с теоретическими выводами показывают, что в конце архея небольшие континенты Земли были невысокими, в атмосфере почти не наблюдалось кислорода, а жизнь существовала только в виде одноклеточных организмов, населявших моря. На бесплодной суше не было ни растений, ни животных, а средние температуры были высокими из-за парникового эффекта, обеспеченного метаном и двуокисью углерода. На поверхность планеты падало смертельное ультрафиолетовое излучение. Прошла почти половина истории Земли, а мир все еще серьезно отличался от того, что мы знаем сегодня.

Глава 5Блуждающие плиты

До 1960-х годов у геологов были достаточно причудливые представления о том, как образовались крупные горные хребты — например, Альпы или Анды. Особенно их озадачивали гигантские складки, которые показывало геологическое картирование в Альпах: толстые слои осадочных пород, первоначально отложившиеся на дно океана, теперь возвышались на километры выше уровня моря, закручиваясь при этом как свернутый ковер. Это требовало вводить в объяснения непонятные «сжимающие силы» и вертикальные перемещения. Никто не мог точно сказать, как действуют эти таинственные силы. Однако сегодня каждый студент-геолог может подробно рассказать, как тектоника плит связана с горными хребтами и многими другими аспектами топографии планеты. Концепция динамической Земли с толстыми плитами, движущимися и взаимодействующими на ее поверхности, обогатила повседневный язык метафорой для радикальных перемен, когда говорят о «двигающихся тектонических плитах» в международных отношениях, политике, финансах или бизнесе.

Перемещения плит меняли облик планеты на протяжении большей части ее истории. Движущей силой является охлаждение нашей планеты из исходного горячего состояния, особенно охлаждение металлического ядра, при котором тепло передается в вышележащую мантию и способствует медленной крупномасштабной конвекции. Устойчивые потоки горячих пород мантии взаимодействуют с холодной твердой внешней оболочкой — литосферой — и заставляют ее двигаться. Однако литосфера — не единый сплошной слой; она разделена на множество фрагментов — литосферных (тектонических) плит (рисунок 11).

Основные принципы тектоники плит разработали в 1960-е годы, что произвело революцию в геологическом мире. То, что раньше было описательной наукой, превратилось в более предсказательную, в которой было проще связать причины и следствия. Тектоника плит стала моделью для понимания, как функционирует Земля в крупных масштабах. Стало ясно то, что раньше понимали плохо: как устроены горные хребты, почему землетрясения и вулканы сконцентрированы в определенных регионах Земли и как формируются бассейны океанов. Эта теория также заставила геологов мыслить глобально и рассматривать даже локальные особенности в более широком контексте. Хотя океаны и атмосфера не являются непосредственной частью теории литосферных плит, геологи вовлекли в геологическое мышление и их, и их взаимодействие с сушей. Когда взаимосвязь геологических процессов стала очевидной, в знак признания этого нового мышления геологические факультеты университетов по всей планете переименовали в факультеты наук о Земле или наук о Земле и окружающей среде.

Рисунок 11. Основные литосферные плиты. Стрелки показывают относительное движение между ними. В большинстве случае плиты либо расходятся (границы расхождения отмечены океаническими хребтами) или сходятся в зонах субдукции (где один блок коры погружается под другой). В некоторых местах, например, на западе Северной Америки, две плиты просто скользят относительно друг друга по разлому. Также существует множество более мелких плит, но они на карте не показаны.

Некоторые идеи, включенные в тектонику плит, имеют давнюю историю. Многие люди, смотревшие на карту мира, замечали, что Африка и Южная Америка подошли бы друг к другу как кусочки пазла, если бы каким-то образом удалось убрать Атлантический океан. Но это кажется невозможным: как убрать тысячи километров океана? В начале двадцатого века немецкий ученый Альфред Вегенер предположил, что материки могли просто дрейфовать через области, которые сейчас заняты океаном. Он назвал этот процесс «дрейфом материков» и в 1915 году опубликовал книгу с изложением своих идей[32]. Физики высмеяли теорию Вегенера, и она никогда не привлекала особого внимания — в основном потому, что в его представлении о дрейфе континентов имелись определенные изъяны. Однако собранные им геологические свидетельства неоспоримы. Он указал, что в Южной Америке есть геологические объекты, которые резко заканчиваются на побережье и при этом совпадают с аналогичными объектами в Африке. Если бы не океан, они были бы единым целым. Он также показал, что последнее оледенение одновременно затронуло некоторые части Индии, Африки и Южной Америки, и что если бы эти три массива суши были соединены, то такие гляциальные черты мог оставить единый ледяной покров. Хотя большинство ученых не принимало идей Вегенера, его геологические доказательства (и многие аналогичные наблюдения, собранные на протяжении десятков лет) означали, что различные воплощения идеи дрейфа материков появлялись в геологической литературе вплоть до возникновения революционной теории тектонических плит.

Наблюдения, которые в конечном итоге привели к теории плит, были получены в результате изучения дна океана — в основном благодаря исследованиям, финансируемым военно-морским флотом США. После Второй мировой войны, когда дальность действия и глубина перемещения подводных лодок резко возросли, ВМФ стал всерьез интересоваться тонкостями подводной топографии. Геологи, занимающиеся морем, были рады пойти навстречу, поскольку щедрость ВМФ дала им возможность исследовать в значительной степени неизвестные области. Они обнаружили, что морское дно вовсе не похоже на тихое однообразное место, как его себе многие представляли. Новые исследования показали с беспрецедентной детальностью, что дно океана — это место колоссальных гор, огромных разломов, глубоких впадин и активных вулканов. Особенно интригующей была линия гор, которая проходит с севера на юг и делит пополам Атлантический океан, повторяя очертания континентов с обеих сторон. Эту систему назвали Срединно-Атлантическим хребтом; для него характерна центральная долина со скалистыми стенами по обе стороны. Кроме того, оказалось, что Срединно-Атлантический хребет не заканчивается в Атлантике. Он соединяется с аналогичной формацией, которая идет на восток по Индийскому океану, вокруг Австралии, а затем в Тихий океан, где простирается на север до Калифорнии, что делает всю систему непрерывным глобальным элементом рельефа.