Зачем нужна геология: краткая история прошлого и будущего нашей планеты — страница 40 из 62

Летопись окаменелостей на суше не так полна, но она тоже показывает основные изменения флоры и фауны во время ПЭТМ. Задолго до открытия этого теплого интервала было известно, что в начале эоцена произошли перемены в видовом составе млекопитающих, населявших северное полушарие. Тщательное сравнение данных по окаменелостям и изотопных данных показывает, что эти перемены практически точно совпадали с тем отклонением в составе изотопов, которое определяет ПЭТМ. Например, на западе Соединенных Штатов при начале ПЭТМ внезапно появились многие новые виды млекопитающих-«иммигрантов». Эти иммигранты быстро стали доминировать в регионе, а общее разнообразие видов увеличилось. В отличие от повышения температуры при ПЭТМ, такие биологические изменения оказались постоянными: когда климат постепенно вернулся к параметрам, которые были до ПЭТМ, новая экосистема млекопитающих сохранилась. Растения на повышение температур отреагировали в основном миграцией в более высокие широты и подъемом в горы. Эта картина напоминает изменения, которые происходили во времена ледниковых и межледниковых эпох в плейстоценовом периоде, когда виды растений северного полушария неоднократно перемещались на север во время межледниковий и на юг во время ледниковий. Примерно ту же реакцию биологи начинают наблюдать в ответ на сравнительно небольшое потепление последних полуста лет: это количественно незначительное повышение температуры привело к зафиксированному перемещению некоторых видов на большие высоты и в более высокие широты.

Возможно, самый важный вывод из палеонтологической летописи времен ПЭТМ (как для морских, так и для наземных организмов) заключается в том, что даже такое мгновенное по геологическим меркам событие, длившееся немногим более 100 000 лет, может иметь серьезные биологические последствия, и что эти изменения могут сохраняться еще долгое время после того, как само событие завершилось. Некоторые следствия ПЭТМ — например, влияние на млекопитающих — проявляются даже спустя 55 миллионов лет.

Если внимательно изучать различные данные об изменениях в течение ПЭТМ, то становится понятно, что в этом интервале было несколько отдельных стадий. Это четко видно по изотопам углерода (рисунок 26). Поначалу произошло быстрое падение значений в сочетании с резким повышением глобальных температур. Затем последовал период относительной стабильности, продолжавшийся примерно 60 тысяч лет, когда изотопные значения оставались на примерно постоянном, но гораздо более низком, чем до ПЭТМ, уровне. Затем наступила фаза восстановления, когда изотопные значения стремительно возрастали, а температура падала. Примерно так же ведут себя и другие параметры, например, содержание карбоната кальция в отложениях.

Важно понимать причины таких отдельных стадий, поскольку они содержат ключ к работе климатической системы Земли. По поводу начального периода быстрых изменений споров немного: как мы видели, это был результат выброса большого количества углерода в систему океан-атмосфера. Однако причина относительно длительного интервала стабильности менее ясна. Многие геологи считают, что первоначальное добавление углерода и последующее быстрое потепление должны были перевести Землю из одного стабильного климатического состояния в другое. Идея, что различные факторы могут заставить климат переходить от одного устойчивого состояния к другому, иногда с какой-то критической точкой, получила подкрепление в ходе изучения более поздних резких изменений климата, например, позднего дриаса, который обсуждался в предыдущей главе. Тем не менее, в течение примерно 60 000 лет стабильности в рамках ПЭТМ происходили другие изменения, хотя они были постепенными. Например, в некоторых кернах из осадочных пород увеличивается содержание карбоната кальция, что говорит о том, что кислотность океанов стала понижаться.

Во время стадии восстановления в конце ПЭТМ все основные параметры начали меняться намного быстрее. Изотопные значения для углерода выросли, температуры упали, а отложения карбоната кальция вернулись к состоянию до ПЭТМ. Какие процессы способствовали такому возвращению? Во время стабильной стадии ПЭТМ растворение карбоната кальция начало медленно нейтрализовать кислотность океана. Усиление выветривания на суше привело к снижению высокой концентрации углекислого газа в атмосфере, уменьшению парникового эффекта и понижению температуры. Различные механизмы обратной связи для углеродного цикла Земли заставили систему вернуться в исходное состояние после такого масштабного добавления углерода. Прежде чем получится выразить все эти процессы количественно, из геологической летописи необходимо извлечь больше информации, однако в целом ситуация вполне понятна.

Какие уроки мы можем извлечь из нынешних знаний о ПЭТМ, если будем задумываться о будущих изменениях в климате? Прежде всего, нынешние выбросы углерода, в основном связанные со сжиганием ископаемого топлива, поистине беспрецедентны. В этой главе я подчеркивал, что запуск ПЭТМ случился из-за массового и быстрого добавления углерода в систему океан-атмосфера. Однако «массовый» и «быстрый» — понятия относительные. Изотопные значения для углерода в океанических отложениях в начале ПЭТМ снижались в течение 20–30 тысяч лет, что, по-видимому, является примерным показателем продолжительности отрезка добавления углерода (справедливости ради, все указывает на то, что в начале этого стартового периода добавление углерода шло гораздо быстрее, чем в конце). Однако при сохранении нынешних темпов выбросов углерода (примерно 4000–5000 миллиардов тонн) люди за два столетия выбросят в окружающую среду примерно такое же количество этого элемента, которое добавилось за весь ПЭТМ. Когда счет идет на сотни лет, а не на тысячи и не десятки тысяч, то скорость добавления углерода как минимум в десять раз больше, чем при ПЭТМ.

Поскольку увеличение объемов диоксида углерода в атмосфере, вызванное человеческой деятельностью, идет так быстро, и его прекращение будет таким же резким (когда у нас закончится ископаемое топливо, или, хотелось бы надеяться, когда начнут преобладать источники энергии, не связанные с ископаемым топливом), то продолжительность отрезка высоких температур будет короче, чем при ПЭТМ. Климатические модели показывают, что большая часть антропогенной двуокиси углерода поглотится океаном, и что после прохождения пика выбросов концентрация углекислого газа в атмосфере и температура быстро (в геологических масштабах) снизятся. Однако из-за сложностей углеродного цикла уровень двуокиси углерода, вероятно, надолго (на многие десятки тысяч лет) стабилизируется на уровне выше сегодняшнего, и температуры тоже останутся выше, чем сейчас.

Эти выводы основаны исключительно на рассмотрении свойств диоксида углерода и углеродного цикла. Они не учитывают потенциальные усиливающие эффекты — например, возможность того, что повышение температуры дестабилизирует гидраты метана, которые в настоящее время заперты в арктической вечной мерзлоте или погребены в отложениях континентального шельфа. Выделение метана из этих источников (особенно если оно будет быстрым) способно усилить и продлить такое рукотворное потепление.

Современные климатические модели предсказывают, что полярные регионы будут нагреваться быстрее, чем низкие широты — в первую очередь из-за того, что будут поглощать больше тепла по мере уменьшения альбедо из-за таяния льдов. Данные о температурах за последние десятилетия показывают, что это уже происходит. Во время ПЭТМ льда в полярных областях практически не было, поэтому альбедо там сильно не менялось. Однако данные, полученные из кернов отложений в высоких широтах показывают, что температуры в этих регионах выросли и оставались высокими — они выше, чем предсказывают климатические модели, если только при моделировании не закладывались чрезмерно высокие концентрации парниковых газов. Это заставляет предположить, что действовали какие-то пока еще не изученные процессы обратной связи, и в результате увеличивается вероятность, что климат высокоширотных областей изменится еще сильнее, чем сейчас ожидается.

Информация из кернов прибрежных отложений, а также из пресноводных отложений во внутренних частях материков подтверждает, что при ПЭТМ наблюдались значительные изменения в осадках. Существуют многочисленные признаки гораздо более высокого уровня осадков в средних и высоких широтах, а в некоторых европейских регионах — и свидетельства частых сильных наводнений. Это согласуется с увеличением испарения и в целом с более влажным климатом, ожидаемым при теплых условиях, и с итоговым ускорением всего гидрологического цикла. Напротив, в западной части США климат при ПЭТМ стал суше. Это соответствует результатам большинства климатических моделей, которые имитируют последствия антропогенного глобального потепления: они предсказывают масштабные и очень сложные перемены в гидрологическом цикле, что затрудняет детальный прогноз для эффектов в отдельных регионах.

Великое потепление при ПЭТМ в каких-то отношениях находит параллели с переменами в системе Земли, которые идут сейчас; этот природный эксперимент дает ценную информацию о том, какими могут оказаться долгосрочные последствия антропогенных изменений. Из того, что обсуждалось в этого главе, ясно, что о его вероятных причинах и глобальных последствиях известно уже немало. Однако палеоклиматологи продолжают искать новые данные об этом событии, и, если ученые смогут расшифровать их, это поможет более точно предсказать будущий климат Земли — такова конечная цель тех, кто занимается исследованиями такого рода.

Глава 10Чтение по губам

Ученые любят аббревиатуры, и чем они привлекательнее, тем лучше. Геологи — не исключение. ПЭТМ из предыдущей главы не особо вдохновляет, но в 1993 году одна группа геологов, интересующихся конкретным видом вулканизма, придумала аббревиатуру, которая, на их взгляд, хорошо описывала объекты их увлечения: LIP