Зачем нужна геология: краткая история прошлого и будущего нашей планеты — страница 6 из 62

Менее очевидные характеристики требуют большей изобретательности, но выгода — с точки зрения того, что можно узнать об истории Земли — настолько велика, что специалисты постоянно ищут новые способы исследования горных пород. Как мы увидим в последующих главах, особенно важной стала геохимия — в частности, подробности химического состава горных пород или ледяных кернов. Поведение химических элементов — железа, серы, молибдена — зависит, например, от количества кислорода в окружающей среде. В результате минералы этих элементов оказываются чувствительными индикаторами уровня кислорода при их образовании, и в некоторых случаях их можно использовать для определения количества кислорода в древнем океане или атмосфере.

Аналогичным образом одним из важных способов извлечения информации о прошлом Земли стал анализ изотопов. (Изотопы — это слегка отличающиеся разновидности одного химического элемента; почти все элементы в периодической таблице имеют несколько изотопов). Когда мы измеряем содержание различных изотопов определенного химического элемента в образце, часто можно узнать условия, которые превалировали при его формировании; далее в книге мы встретим множество примеров такого подхода. Например, содержание изотопов водорода и кислорода в ледяном керне может рассказать нам о температуре 100 000 лет назад; изотопы в какой-нибудь древней породе могли зафиксировать процесс, который ее создал, и это дает нам возможность исследовать, был ли похож этот процесс на те, что происходят сейчас, или отличается от них.

Самое первое применение изотопов в науках о Земле (если не считать использование радиоактивных изотопов для датировки) до сих пор вызывает восхищение геохимиков, а иногда и изумление тех, кто ничего не слышал о геохимии. Это хорошая иллюстрация того, как обычные камни могут быть настоящей сокровищницей сведений о прошлом — для тех, кто умеет задавать правильные вопросы. В конце 1940-х годов лауреат Нобелевской премии химик Гарольд Юри из Чикагского университета на основе теоретических выкладок обнаружил, что в некоторых соединениях пропорции различных изотопов кислорода зависят от температуры, при которой эти соединения образовывались. Химика осенила новаторская идея, что это свойство можно использовать для определения температуры древнего океана. Юри предположил, что, измерив содержание изотопов кислорода в карбонате кальция, входящем в состав раковин окаменевших морских организмов, можно вычислить температуру воды, в которой эти существа некогда жили. Вместе со своими учениками Юри проверил эту теорию, и проведенные ими измерения сделали их пионерами в области «палеотемпературного» анализа. После этой первой работы содержание изотопов кислорода измеряли уже десятки тысяч, если не сотни тысяч раз, и это позволило детально зафиксировать колебания температуры морской воды в прошлом. По моему скромному мнению (хотя, возможно, я слегка необъективен, поскольку сам занимался геохимией), палеотемпературная работа Юри входит в число величайших достижений в области наук о земле.

Конечно, различные типы горных пород поднимают разные вопросы о прошлом (или как минимум позволяют задавать различные вопросы), однако ученые разработали четко определенные подходы для большинства разновидностей пород в трех основных категориях: магматические, осадочные и метаморфические горные породы. Это известное деление основано на способе образования: магматические породы (например, гранит) образовались из расплавленных предшественников, и одним из первых это осознал Джеймс Хаттон; осадочные породы возникли в результате осаждения частиц, обычно из воды; метаморфические породы возникают, когда с породой-предшественником происходят физико-химические изменения — как правило, при нагреве или напряжении во время таких процессов, как глубокое погружение или горообразование. Современные теории о формировании и развитии внешней части Земли основаны на данных, полученных в основном из химических свойств магматических и метаморфических пород — основных компонентов как континентов, так и океанического дна. Однако во многих отношениях наиболее важными для расшифровки истории планеты являются осадочные породы.

Почему так произошло? Причин как минимум две. Во-первых, они образуются на поверхности Земли, в основном в море, но иногда (например, в случае пород, состоящих из песка) — при контакте с атмосферой. Это означает, что потенциально эти породы содержат информацию об условиях на поверхности Земли в далеком прошлом. Во-вторых, многие осадочные породы содержат окаменелости — основные свидетельства возникновения и развития жизни на Земле. Без окаменелостей наше понимание эволюции было бы рудиментарным.

Собирая воедино тысячи и тысячи фактов из исследований отдельных магматических, метаморфических и осадочных пород и их обнажений, ученые постепенно соткали историю Земли. Как обычно и бывает в истории, чем дальше вы заходите в прошлое, тем менее четкими становятся детали. Некоторые из самых древних свидетельств полностью отсутствуют, или их трудно расшифровать, поскольку геологические процессы, происходившие на планете миллионы и миллиарды лет, изменили характеристики горных пород и запутали все содержащиеся в них намеки и подсказки. Тем не менее, повествование об эволюции нашей планеты в том виде, как мы ее сегодня представляем — это выдающееся научное достижение. При этом рассказ постоянно пересматривается и обновляется — по мере того, как появляются новые открытия, а усовершенствование наших аналитических возможностей позволяет задавать новые вопросы.

Так что же насчет хронологии? Как специалисты определили временную шкалу для такого повествования? Если мы хотим понять значение событий, их нужно упорядочить по времени; не особо полезно знать температуру морской воды, в которой росло какое-то ископаемое животное, если вы понятия не имеете, когда оно жило. С момента хаттоновского «ни следов начала, ни перспектив конца» (и даже еще раньше) ученые искали способы определить возраст горных пород и Земли в целом. Конечной цели — разработки методов, которые могли бы дать «абсолютный» возраст горных пород в годах — удалось добиться только с открытием радиоактивности в конце XIX века. Вскоре мы к этому вернемся. Однако задолго до появления методов радиоизотопного датирования ученые разработали первые варианты геологической шкалы, расположив во времени важные события из истории планеты. (Современную версию можно увидеть на рисунке 1; если вы еще не знакомы с названиями геологических эонов, периодов и т. д., то при чтении книги имеет смысл обращаться к этой диаграмме). Как они это сделали?

Еще в 1660-х годах датский анатом Нильс Стенсен[8], отличавшийся ненасытным любопытством к миру природы, осознал, что породы в нижней части толщи осадочных слоев должны быть старше, чем те, что находятся сверху. В то время Стенсен жил в Италии, и его наблюдения были сделаны при изучении осадочных пород в Альпах. Его идея состояла в том, что альпийские осадочные слои (и окаменелости, в них содержащиеся) имеют большое значение для определения времени. Разумеется, можно было установить лишь относительное время: Стенсен мог сказать, был ли данный слой старше или моложе своих соседей, но не мог определить его фактический возраст. Сейчас это может показаться очевидным, но в то время это был настоящий прорыв. Изучая слои залегающих в Альпах горных пород, Стенсен смог наглядно представить способ и время их образования. Сегодня он считается основоположником стратиграфии — раздела геологии, изучающего слои осадочных пород.

После Стенсена его простой принцип упорядочивания осадочных слоев во времени стали использовать, чтобы получить относительную хронологию геологических событий. Это было достаточно просто сделать в каком-то одном регионе, когда на различных обнажениях можно проследить отдельные слои. Трудности появляются с установлением корреляции на больших расстояниях. Имеет ли слой известняка во Франции тот же возраст, который имеет такой же слой в Англии, в Швеции или по ту сторону Атлантики в Соединенных Штатах? Трудно сказать. Можно было построить относительные шкалы в отдельных регионах, но глобальная единая шкала казалась недостижимой.

Однако осадочные породы содержали ключи к решению этой задачи. Задолго до того, как Чарлз Дарвин писал об эволюции, ученые признавали, что жизнь на планете со временем менялась. Куда бы они ни смотрели, обнаруживалась одна и та же история. Окаменелости в самых молодых породах в верхней части осадочных толщ походили на живущие формы, однако окаменелости из нижних, более старых слоев часто оказывались мелкими и совершенно несходными со всеми известными растениями и животными. А в некоторых местах ниже пород, содержащих незнакомые окаменелости, лежали слои, полностью лишенные признаков животной или растительной жизни. Эти слои были еще древнее.

Одним из первых, кто осознал практическое применение этой последовательности, был британский землемер Уильям Смит. Занимался он межеванием земель и обмером шахт, но его страстью была геология: путешествуя по делам по стране, он делал заметки о местной геологии и собирал окаменелости. Он обратил внимание, что порядок, в котором сообщества организмов меняются при переходе от старых пород к более молодым, сохраняется, даже если сами породы выглядят по-разному. За полвека с лишним до того, как Дарвин опубликовал свое «Происхождение видов», Смит с гордостью показывал друзьям свою коллекцию окаменелостей, которую организовал по относительному возрасту, а не по сходству организмов, как обычно делали современные ему коллекционеры. Хотя Смит этого и не осознавал, он использовал эволюцию, зафиксированную окаменелостями, чтобы установить связь между осадочными породами, образовавшимися в одно время, но в разных и отдаленных друг от друга местах. Цель — глобальная относительная шкала времени — стала на шаг ближе.

Рисунок 1. Геохронологическая шкала с датами в миллионах лет от нынешнего момента. Обратите внимание на изменение масштаба в момент 700 миллионов лет в протерозойском эоне. Здесь показаны только крупные подразделы временной шкалы; геологи выделяют много более мелких интервалов. (На основе последних данных Международной комиссии по стратиграфии).