Зачем нужна геология: краткая история прошлого и будущего нашей планеты — страница 7 из 62

Последователи Стенсена и Смита постепенно строили геологическую шкалу времени, пока не заполнили подразделы, показанные на рисунке 1 — от кембрийского периода до нашего времени. Названия, которые они присваивали крупным подразделам шкалы (в частности, периодам), обычно отсылали к названиям географических регионов, изобиловавших породами соответствующего времени, которые содержали окаменелости, и где их впервые детально описали — например юрский период назван по горному массиву Юра в Швейцарии, а ордовикский и силурийский — по названиям двух древних племен, живших в разных частях Уэльса, ордовиков и силуров. Все это было сделано до открытия радиоактивности, и ученые не представляли, насколько осваиваемый ими промежуток времени масштабен на самом деле. Кроме того, поскольку относительная шкала была основана на окаменелостях, то ниже кембрийского периода она оставалась пустой[9]. Более старые породы для первых геологов не содержали вообще никаких окаменелостей (как мы увидим, жизнь на Земле существовала задолго до этого, однако окаменелости тех времен в основном мелкие, редкие, и их легко не заметить). Эти древние и с виду безжизненные породы назвали просто «докембрием».

Такая первая относительная хронологическая шкала фактически была летописью эволюции морской жизни. Хотя в прошлом, как и сегодня, формы жизни в разных географических местах различались, общий порядок эволюции, отраженный в летописи окаменелостей, достаточно ясен, чтобы мы могли правильно расположить осадочные породы в любой точке мира, если они содержат окаменелости. Например, девонские скалы в Европе содержат ископаемые сообщества, которые весьма похожи на такие же сообщества из девонских пород Америки и Африки. Это очень помогло в создании временной шкалы, потому что на Земле нет одного места, где бы нашлась непрерывная последовательность осадочных слоев с породами от кембрия до настоящего времени (или хотя бы значительная часть такого промежутка). Временную шкалу приходится строить постепенно путем детального изучения небольших фрагментов такой географической колонки (как ее часто называют), расположенных в разных местах, и исследовать корреляцию там, где есть очевидное перекрытие. Поначалу такой подход может показаться несистематическим, но на деле он оказался крайне успешным, о чем свидетельствует шкала на рисунке 1. Наше понимание эволюции настолько полно, что опытный геолог может подойти к выходу осадочных пород в любой точке мира, и если он найдет несколько окаменелостей, то довольно точно определит место породы на геологической шкале времени.

Этого удалось добиться несмотря на то, что в качестве окаменелостей сохранилась лишь небольшая часть видов, когда-либо существовавших на планете. Не так-то просто стать ископаемым. Согласно большинству оценок, в горных породах сохранилось менее 1 % видов, и несложно понять, почему. Даже в самых благоприятных условиях — на тихом морском дне с медленно накапливающимися илистыми отложениями — большинство мертвых организмов до сохранения сгниют или растворятся, или вообще еще раньше будут съедены падальщиками. Обычно сохраняются лишь твердые части — раковины, кости и зубы, да и то часто в виде фрагментов. Проблема усугубляется тем, что иногда трудно догадаться о целом по части. Окаменелые зубы акул встречались достаточно регулярно, однако долгое время — несмотря на то, что акулы всем известны — никто не знал, что это за окаменелости, поскольку они были изолированными предметами, не связанными с чем-то иным. Даже в том случае, когда окаменелость сохраняется целиком, эрозия или метаморфизм могут впоследствии уничтожить ту осадочную породу, которая ее содержит. Возникающие пробелы в палеонтологической летописи беспокоили многих ученых, включая Дарвина.

И тем не менее, даже с ограниченной выборкой окаменелых видов осадочные горные породы удивительно подробно рассказывают о том, как менялась жизнь на планете. Первые геологи проводили границы между эрами и периодами и даже между более мелкими подразделами временной шкалы в тех местах геологической колонки, где наблюдали быстрое изменение типов сохранившихся ископаемых. Названия трех эр, показанных на рисунке 1палеозойская, мезозойская и кайнозойская — взяты из греческого языка и означают «древняя жизнь», «средняя жизнь» и «новая жизнь», поскольку на границах между ними происходят резкие перемены в окаменелостях, и по мере приближения к настоящему сохраняющиеся формы жизни становятся все более знакомыми. Эти границы легко проследить всюду, где встречаются породы соответствующего возраста, и сейчас мы знаем, что они фиксируют короткие периоды масштабных вымираний, когда значительные доли организмов, населяющих океаны, исчезали в результате катастрофических нарушений среды. За этими вымираниями относительно быстро (с геологической точки зрения) следовало развитие и распространение новых форм жизни. Границы между геологическими периодами тоже отмечены не такими радикальными, но все же серьезными переменами в составе морских организмов.

Долгое время не удавалось определить время этих событий. К концу XIX века над способами измерения геологического времени уже работали ученые всех специальностей. Физики хотели узнать возраст Земли; геологи — возраст отдельных горных пород и продолжительность различных участков временной шкалы. Предлагались самые разные оригинальные подходы, однако большинство из них опирались на сомнительные исходные предположения, и все они приводили к колоссальным неопределенностям. Самые радикальные оценки для возраста Земли лежали в диапазоне от нескольких десятков миллионов лет до, возможно, 100 миллионов лет. Просто не существовало надежного способа понять, какой промежуток времени представляют докембрийские породы, или узнать что-нибудь о скорости эволюции.

Все изменилось с открытием радиоактивности в 1896 году. Как только обнаружилось, что радиоактивные изотопы распадаются с постоянной скоростью, стало очевидно, что это явление можно использовать для геологического датирования. Первым этим занялся один из пионеров исследований радиоактивности физик-экспериментатор Эрнест Резерфорд. Он попросил коллег-геологов передать ему породы, которые они считали очень старыми. По радиоактивным изотопам в этих образцах он установил, что им примерно 500 миллионов лет. Этот поразительный результат потряс научный мир: ведь если результат Резерфорда был верен, то Земле больше 500 миллионов лет, то есть она гораздо старше, чем принято было думать.

По сегодняшним меркам эксперименты Резерфорда были грубыми. С тех пор геохронология — наука о датировании горных пород — добилась больших успехов. Принцип остался тем же самым: мы основываемся на факте, что радиоактивные изотопы распадаются с постоянной скоростью. Однако современные аналитические инструменты способны производить очень точные измерения с очень небольшим количеством материалов, и даты, полученные в результате, тоже очень точны. Все данные о границах на рисунке 1 основаны на радиоизотопном датировании (как обычно называют этот метод), и этот же метод показал, что возраст нашей планеты — от 4,5 до 4,6 миллиарда лет[10]. Время — настолько важная часть расшифровки прошлого, что стоит потратить несколько страниц, чтобы понять, как работает радиоизотопное датирование (иначе — радиометрическое датирование).

Прежде всего нужно сказать, что геологическое время — необъятный промежуток. Четыре с половиной миллиарда лет — срок, который человеку очень трудно осознать. В нашу эпоху миллионеров и дотаций в триллионы долларов само это число не кажется чем-то необычным, однако оказывается колоссальным, если вдуматься в эту цифру. Наш вид Homo sapiens существует примерно 200 000 лет (возможно, немного меньше) — весьма долгое время по большинству стандартов. Однако это мизерная часть возраста Земли — примерно сорок миллионных. Часто проводят аналогию: изображают историю земли в виде воображаемого трехчасового фильма. Три часа для фильма — очень много, однако даже в этом случае Homo sapiens появляется только в последние полсекунды.

Одно из следствий огромного масштаба геологического времени — то, что многие геологические процессы, протекающие с ничтожной скоростью, могут вызвать колоссальные изменения. Как мы увидим далее, литосферные плиты двигаются со скоростью всего несколько сантиметров в год; однако умножьте эту величину на сотни миллионов лет — и окажется, что так могут открываться и закрываться целые океанические бассейны. Целые горные хребты за это время могут подняться, а затем снова исчезнуть в результате эрозии.

Однако вернемся к деталям методов датирования, которые применяют для измерения гигантских промежутков времени: к счастью, в периодической таблице есть много элементов с природными радиоактивными изотопами, и множество природных материалов содержат один или несколько этих изотопов в том или ином количестве. Это значит, что в принципе при разумном отборе образцов датировать можно практически всё. Однако каждая из разработанных учеными процедур датирования имеет определенные ограничения. Например, радиоуглеродное датирование (вероятно, наиболее известный из геохронологических методов) можно использовать только для датировки органического материала, который был частью живого растения или животного, причем материал должен быть моложе 50 тысяч лет. Ограничение вызвано тем, что метод основан на радиоактивном распаде радиоуглерода (углерода-14), который распадается очень быстро. (Число в названии изотопа означает общее количество протонов и нейтронов в ядре атома — в случае углерода-14 в ядре 6 протонов и 8 нейтронов. В научной литературе оно обычно указывается индексом сверху, то есть