ные колебания, нужны приборы, которые в то время еще не изобрели, так что у ван де Кампа их быть не могло (немногие обсерватории могут похвастаться их наличием и сегодня). Сам же ван де Камп до конца жизни стоял на том, что его измерения верны и планета у звезды Барнарда (и, возможно, не одна) действительно есть. Исследования, проведенные в 2002 году, показали, что если у звезды Барнарда и есть планеты, то их масса должна быть меньше предполагаемой ван де Кампом. Совсем недавно, в ноябре 2018 года, многолетний спор был наконец разрешен: у звезды Барнарда обнаружили каменистую экзопланету массой не менее 3 M⊕30.
Обнаружить изменение координат звезды, создаваемое планетой, невероятно сложно даже сегодня, ведь радиус колебаний звезды в этом случае сопоставим с самим звездным радиусом! Но есть еще один способ обнаружить движение далеких звезд, и связан он не с детектированием периодического изменения координат звезды, а с обнаружением периодического изменения скорости. Этот способ основан на эффекте Доплера.
О том, что изменение скорости звезды может свидетельствовать о наличии у нее планеты, писал еще Отто Струве[28] в 1952 году. К тому же в своей работе он произвел оценку амплитуды колебаний скорости звезды, получаемой от планеты: «Кажется, в настоящее время нет способа обнаружить объекты, соответствующие по массе Юпитеру; также нет большой надежды, что мы сможем обнаружить объекты и в 10 раз бо́льшие по массе, чем Юпитер, если они находятся на расстоянии одной или нескольких астрономических единиц от их родительских звезд. Но, похоже, нет веской причины, по которой гипотетические звездные планеты в ряде случаев не должны быть намного ближе к своим родительским звездам, чем в нашей Солнечной системе. Было бы интересно проверить, есть ли такие объекты… Не исключено, что планета может существовать на расстоянии 1/50 астрономической единицы, или около трех миллионов километров, от звезды… Если бы масса этой планеты равнялась массе Юпитера, наблюдаемая скорость родительской звезды колебалась бы в диапазоне ± 0,2 км/с»31.
Эффект Доплера обычно иллюстрируют с помощью примера с поездом, звук гудка которого при приближении состава становится выше, а при удалении – ниже. Высота звука зависит от воспринимаемой частоты. Звук, как известно, это волна плотности, распространяющаяся в некой среде. Когда поезд приближается, гребни звуковых волн доходят до нас чаще и, следовательно, воспринимаемая частота кажется выше. А когда поезд удаляется, гребни доходят реже и частота звука воспринимается как более низкая. Эффект Доплера характерен для любого типа волн – звуковых и световых, волн на воде.
Воспринимаемая частота света, излученного звездой, зависит от того, с какой скоростью звезда движется относительно Земли. Если она удаляется, то воспринимаемый свет, разложенный в спектр, смещается в сторону низких частот – в сторону красного цвета, – а если звезда приближается к наблюдателю, то в ее спектре преобладают оттенки синего. В Галактике есть звезды, существование планетных систем возле которых удобно обнаруживать, наблюдая, как со временем меняются их спектры, – такой способ называют методом доплеровской спектроскопии. Плоскости эклиптик планетных систем этих звезд расположены к нам как бы ребром. Вращаясь вокруг центра масс, звезда в такой системе одну половину своего годичного периода удаляется от нас, а другую – приближается. Если спектр звезды со временем меняется каким-то периодическим образом, значит, звезда движется, а потому вполне вероятно, вокруг нее есть планета или планеты. Графики, показывающие, как спектр зависит от времени, называются спектрограммами.
Но как понять, сдвинулся спектр или нет? Свет рождается в самой горячей части звезд, в ядре, во время реакции ядерного синтеза. Любопытно, что для того, чтобы пробиться сквозь толщу звездного вещества, фотонам, элементарным частицам света, часто необходимо потратить сотни тысяч и даже миллионы лет. Сегодня мы видим свет, рожденный в те времена, когда по Земле ходили еще очень далекие наши предки. В ядре свет генерируется на всех возможных частотах, но, когда он проходит через более холодные наружные слои звезды, в спектре образуются линии поглощения, соответствующие химическим веществам звездной атмосферы. Если линия поглощения сместилась с того положения, где она была некоторое время назад, это говорит о том, что сместилась частота, а значит, звезда движется. Если же удастся увидеть синусоидальное смещение линий поглощения в спектре звезд – это будет свидетельством кругового движения звезды вокруг центра масс ее планетной системы.
Наиболее эффективным способом обнаружения экзопланет стал транзитный метод, именно так искал планеты «Кеплер» и так продолжает искать и исследовать их следующее поколение космических телескопов: COnvection ROtation and planetary Transits, или COROT, Transiting Exoplanet Survey Satellite, или TESS, и CHaracterising ExOPlanets Satellite, или CHEOPS. Идея транзитного метода самая простая из рассмотренных, но именно поэтому она требует невероятно точной техники. Суть в том, что вместо изучения спектров звезд следить нужно за их блеском – грубо говоря, за количеством принимаемых телескопом в единицу времени фотонов. Если у звезды есть планета, то периодически она заслоняет небольшую площадь звездного диска и звезда ненадолго тускнеет для наблюдателя.
В следующих главах мы более подробно рассмотрим спектроскопический и транзитный методы обнаружения экзопланет, а также (с долей фантазии) попытаемся представить себе пейзажи некоторых из миров, обнаруженных астрономами за последнее время. Здесь, на Земле, еще никто и никогда не встречался ни с чем подобным. Но законы физики и химии, работающие одинаково во всех уголках Вселенной, неминуемо приводят к рождению таких удивительных и разнообразных миров. Только помните, что многие наши выводы могут оказаться ошибочными, ведь даже самые близкие к нам планеты Солнечной системы – те, что мы исследуем напрямую, а не косвенно, реконструируя их поверхности по жалким кусочкам информации, – продолжают преподносить сюрпризы в ходе каждой новой исследовательской программы.
На начало 2020 года, согласно сайту NASA Exoplanet Archive, нам достоверно известно о существовании свыше 4 000 экзопланет. Но у нас есть лишь самые общие сведения о них. Возможно, когда-то наши телескопы позволят разглядеть там даже материки и обнаружить следы влияния жизни на рельеф и атмосферу экзопланет. Быть может, однажды космонавты ступят на поверхность чужих планет и своими глазами увидят, что мы были правы (или не правы) в своих предположениях.
Глава 5. Джоселин Белл, пульсары и тайна первой планеты
Когда придет время, моя совесть будет чиста. Я сделала все возможное.
Чтобы рассказать о первой открытой экзопланете, нужно сделать небольшое отступление и познакомиться с Джоселин Белл Бернелл – одним из самых известных астрофизиков, так и не ставшим лауреатом Нобелевской премии, а также ее открытием – одним из самых значительных в астрофизике.
Джоселин Белл родилась 15 июля 1943 года в Белфасте в Северной Ирландии. Ее отец был главным архитектором старинной обсерватории в городе Арма. С детства Белл проводила много времени с сотрудниками этой обсерватории и читала книги о Вселенной из богатой библиотеки отца – в общем, не оставляла себе другого выбора, кроме как посвятить будущую жизнь астрономии.
Окончив Университет Глазго по специальности «физика» с отличием, в 1965 году Белл перебралась в Кембридж – по ее словам, скорее случайно. Она была одной из немногих женщин, которым одобрили заявку на обучение в аспирантуре в таком престижном университете. Когда Белл узнала о зачислении, оказалось, что она подвержена синдрому самозванца: Белл подумала, что закралась какая-то ошибка, ведь она не заслуживает возможности учиться здесь.
В Кембридже Белл начала работать в группе доктора Энтони Хьюиша. Свою научную карьеру тот начал во время войны под руководством Мартина Райла (мы с ним уже встречались в прошлой главе) в Научно-исследовательском центре телекоммуникации в Малверне. Там разрабатывали бортовые радиолокационные системы для авиации. После войны Райл занялся исследованием солнечного радиоизлучения, а затем переключился на более перспективную радиоинтерферометрию. В 1946 году он и его команда создали первый в мире многоэлементный радиоинтерферометр, а чуть позже обнаружили четыре радиозвезды – космические радиоисточники, никак не связанные с обычными звездами. (Позже, уже в 1950-х годах, оказалось, что эти таинственные радиозвезды представляют собой новый тип далеких активных галактик. Их стали называть квазарами.)
В 1948 году Мартин Райл перебрался в Кембридж, где начал читать лекции, а также руководить научной группой в Кавендишской лаборатории. В том же году к группе Райла перебрался Энтони Хьюиш, который занялся выяснением причин недавно обнаруженного мерцания излучения радиозвезд. В итоге, когда оказалось, что это мерцание связано с нарушением условий в верхних слоях атмосферы, Мартин Райл потерял к явлению интерес, а Хьюиш увидел возможность для самостоятельных научных поисков. Так Райл и Хьюиш и продолжали работать – совместно над радиоинтерферометрами и обособленно над собственными проектами.
Но вернемся к Джоселин Белл, присоединившейся к группе Энтони Хьюиша. Он еще с 1965 года намеревался провести крупномасштабное исследование по установлению точных координат уже известных квазаров и поиску новых. Для этого Хьюиш инициировал строительство радиотелескопа, способного «разрешать» события, разделенные интервалом всего в 0,1 с, он назвал его «Межпланетный сцинтилляционный массив». Площадью 16 км2 – чуть больше, чем два футбольных поля, – радиотелескоп состоял из 4 096 простых антенн, объединенных в интерферометрическую сеть. Чтобы соединить все антенны, необходимо было смонтировать около 200 км проводов – и этот труд Хьюиш полностью взвалил на плечи учеников. При зачислении в радиоастрономическую лабораторию Хьюиша, по воспоминаниям Белл, каждому студенту выдавался набор инструментов: плоскогубцы, кусачки и отвертка