Загадки космоса. Планеты и экзопланеты — страница 14 из 47

[29].

Поначалу Белл наравне с остальными студентами занималась монтажными работами, но, когда летом 1967 года «Межпланетный сцинтилляционный массив» заработал, она переключилась на изучение получаемой с него информации. Все принятые данные передавались на самописцы, выдававшие в день по 30 м картографической бумаги с красной линией, регистрирующей интенсивность радиоисточников. Во времена, когда не существовало никаких компьютеров, просматривать ленты приходилось людям. Задача Белл состояла как раз в этом.


Рисунок 9. Джоселин Белл


Белл просматривала буквально километры распечаток, регистрировавших радиосигналы, в поисках квазаров, а в перерывах, вооружившись плоскогубцами, латала фазированные решетки радиотелескопа. Работая таким образом, она заметила необычный сигнал: серию слабых и регулярных радиоимпульсов с периодом около 1,3 с. На ленте они занимали всего пару сантиметров. Впоследствии Белл рассказывала об этом так: «Это был очень, очень слабый сигнал. Он занимал примерно одну стотысячную долю из трех миль картографических данных, которые у меня были. Я заметила это, потому что была невероятно осторожна и очень внимательна из-за синдрома самозванца. Пусть меня выгонят, но до этого времени я буду работать очень усердно. Когда придет время, моя совесть будет чиста. Я сделала все возможное». Хьюиш сначала подумал, что обнаруженное Белл явление – это переотраженный в атмосфере сигнал с Земли. Холодная война была в самом разгаре, и такой источник мог означать все что угодно.

В течение нескольких последующих месяцев Хьюиш и Белл занимались тем, что перепроверяли все возможные источники таинственных радиоимпульсов. Когда стало понятно, что сигналы имеют все же внеземное происхождение, ученые полушутя назвали их LGM – Little Green Men («Маленькие зеленые человечки»): совсем недавно началась и космическая эра, так что воздух был пронизан предвкушением встречи с инопланетянами. Вскоре в других частях неба были обнаружены еще три подобных радиоимпульса, но с другим периодом. Стало понятно, что это не радиомаяк какой-то инопланетной цивилизации, а некий новый тип астрономических объектов.

Название им было придумано случайно. Во время интервью для газеты The Daily Telegraph в 1968 году научный корреспондент спросил Белл, как следует называть эти радиоимпульсы, и сам же предложил вариант «пульсар» как производную от выражения «пульсирующий квазар». На том и остановились, а название прижилось.

О своем открытии ученые написали две статьи в Nature – в самый известный научный журнал в мире32, 33. Белл защитила докторскую диссертацию по квазарам – менять тему было уже поздно, но она добавила приложение с подробностями об открытии пульсаров. Однако общество, по-видимому, еще не было готово к тому, что открытие может совершить недавний студент. В 1974 году Нобелевский комитет присудил премию по физике Мартину Райлу, за новаторские исследования в радиоастрофизике, и Энтони Хьюишу, за решающую роль в открытии пульсаров, – безусловно, достойным людям. Белл в список номинантов на премию не попала.

В результате разгорелся скандал. По мнению общественности, именно Джоселин Белл сделала величайшее открытие в астрофизике и именно ей должны были присудить Нобелевскую премию. Но, судя по всему, сама Белл, в силу природной скромности, не очень расстроилась. Она сделала прекрасную карьеру, получила множество наград и премий и в 2013 году вошла в сотню самых известных женщин Великобритании. Наконец, в 2018 году она была удостоена Премии за прорыв в области фундаментальной физики в размере трех миллионов долларов (как три Нобелевские премии) за открытие радиопульсаров. Все деньги Белл пожертвовала Институту физики в Лондоне на «финансирование выпускников из недостаточно представленных групп – женщин, представителей этнических меньшинств и беженцев, чтобы они могли стать учеными-физиками».



Что же такое пульсары, которые впервые обнаружила Джоселин Белл? Согласно современным представлениям, пульсар – это то, что остается от некоторых звезд на последних стадиях их эволюции. В первой главе рассказывалось, что звезда – это шар, состоящий из плазмы. Звезды рождаются, аккумулируя огромное количество газа, сжимаясь под действием собственной гравитации во все более плотные и горячие сгустки вещества. В какой-то момент плотность и давление внутри звезды достигают такой величины, что начинаются самоподдерживающиеся реакции ядерного синтеза: более легкие ядра превращаются в более тяжелые. Каждая последующая реакция требует все более высоких температур и давления. Когда в центре звезды закончится весь доступный водород, давление и температура возрастут настолько, что начнутся термоядерные реакции с гелием; когда закончится гелий, настанет время углерода, горение углерода сменится горением кислорода и так далее. Элемент, на котором прекратится термоядерный синтез, зависит от начальной массы звезды: так, в случае с Солнцем все остановится на углероде – чтобы «переплавить» его в кислород массы нашей родной звезды недостаточно.


Рисунок 10. Галактика NGC 4526 и ее сверхновая 1994 D (слева внизу). Изображение получено с помощью телескопа «Хаббл»


Если масса звезды больше 8 M, то химические элементы в ее центре последовательно переплавляются во все более и более тяжелые элементы, вплоть до железа. На железе процесс останавливается. Дело в том, что для того, чтобы превратить железо во что-то более тяжелое, необходимо поглотить дополнительную энергию, тогда как в ходе предыдущих реакций она выделялась. Следовательно, ядерный синтез железа приведет к снижению температуры звезды. Как только это произойдет, внутреннего давления звезды окажется недостаточно, чтобы удерживать ее массу: внешние оболочки звезды обрушатся на ядро и, как брошенный с высоты мячик, отскочат в космическое пространство. Взрыв звезды порождает невероятно яркую вспышку (взрыв сверхновой). Яркость звезды увеличивается в десятки и даже сотни миллионов раз, а количество энергии, излучаемой сверхновой во время взрыва, больше, чем то, что излучают одновременно все звезды Галактики.

После взрыва на месте сверхновой остается компактный сверхплотный объект. Дальнейшая его судьба зависит опять-таки от его массы. Если она больше 2 M, уже ничего не сможет помешать его коллапсу: объект обрушится внутрь себя и превратится в черную дыру – область с такой сильной гравитацией, что даже свет не может покинуть ее. Если же масса объекта меньше, коллапс остановится ядерными силами и образуется быстровращающаяся нейтронная звезда. При радиусе примерно 20 км и массе, близкой к массе Солнца, плотность звезды такова, что электронные оболочки атомов буквально вдавливаются в протоны, образуя тем самым нейтроны.

У нейтронных звезд есть интересная особенность. Магнитное поле, которым они обладают, имеет напряженность в миллиарды раз бо́льшую, чем на сегодняшний день смогли получить ученые в лабораториях. Даже атомы вещества, попав в такое поле, выстраиваются вдоль линии магнитного поля и становятся похожи на цилиндры, а не на сферы. Ученые до сих пор дискутируют на тему того, как образуется столь сильное поле. Это магнитное поле генерирует поток радиоизлучения. Как и на Земле, оно имеет северный и южный магнитные полюсы. Эти полюсы не обязательно совпадают с осью вращения звезды. (Так же и на Земле: северный полюс, тот, на который указывает стрелка компаса, не совпадает с географическим Северным полюсом примерно на 11°.) Ускоряясь в магнитном поле, электроны и другие заряженные частицы генерируют мощный поток радиоизлучения, которое, в свою очередь, подхватывается магнитным полем, увлекается им и вращается вместе с нейтронной звездой. Это похоже на вращающийся луч света от маяка: если ночью находиться далеко от него, кажется, будто свет мигает. На Земле мы регулярно фиксируем всплески радиоимпульсов[30]. Нейтронные звезды, от которых с Земли можно наблюдать периодические всплески радиоизлучения, и называются радиопульсарами.

Джоселин Белл в далеком 1967 году обнаружила именно такой объект, поток радиоизлучения которого раз в 1,337 с пробегал по поверхности Земли. И именно возле подобного объекта ровно через четверть века была зафиксирована первая экзопланета. После открытия Белл и Хьюиша астрономы со всего мира принялись искать пульсары, и сегодня мы знаем о тысячах таких объектов.

В январе 1992 года в Nature появилась статья34, в которой польский астрофизик Александр Вольщан (который, кстати, получил образование в университете города Торун, где в свое время учился Николай Коперник, – астрономический мир тесен!) привел доказательства того, что возле пульсара PSR 1257+12[31] есть планеты. Его метод основывался на тщательном измерении частоты прихода импульсов от нейтронной звезды.

Открытие пульсаров нельзя назвать случайностью. Напротив, история открытия экзопланет начинается со счастливого случая. Вольщан занимался изучением миллисекундных пульсаров – пульсаров, имеющих период до нескольких десятков миллисекунд (их происхождение связывают уже не со взрывом сверхновых, а с двойными системами, один из компаньонов в которых – нейтронная звезда). Он проводил свои исследования на крупнейшем в мире (на тот момент) радиотелескопе «Аресибо» в Пуэрто-Рико. Этот телескоп имеет диаметр более 300 м и располагается в естественном углублении в горах. Во время наблюдений чаша телескопа остается неподвижной, а фокусировку на астрономических объектах обеспечивает перемещающаяся управляемая антенна, прикрепленная к трем опорам. Если бы телескоп функционировал как обычно, заявку Вольщана на работу с ним просто отклонили бы, но управляемая антенна в тот момент находилась в нерабочем состоянии, поэтому спрос на телескоп упал и заявку приняли.

Как и Белл, Вольщан не искал то, что в итоге нашел, – целью его работы было исследование миллисекундных пульсаров. Обнаружил же он два новых пульсара. Первый входил в достаточно интересную систему двух вращающихся друг относительно друга нейтронных звезд. Но потом его внимание привлек другой пульсар –