TESS. Оба телескопа используют транзитный метод обнаружения экзопланет – на сегодняшний день это самый эффективный метод.
Если вы знаете, что такое затмение, будьте уверены: что такое транзит, вы тоже знаете. «Затмение», «транзит» и «покрытие» – это разные слова для обозначения схожих явлений, происходящих, когда один астрономический объект проходит между наблюдателем и другим объектом (как правило, более далеким и более ярким). Разница между этими явлениями – в наблюдаемых размерах объектов. Если угловые размеры двух объектов сопоставимы, мы говорим о затмении одного объекта другим – например, как в случае с солнечным затмением. Если видимый размер более далекого объекта оказывается намного меньше видимого размера более близкого, это явление называется покрытием. Постоянно происходят покрытия некоторых звезд Луной. Обратная ситуация называется транзитом: скажем, когда самолет пролетает на фоне Луны, он совершает транзит.
Транзиты исторически были важны в астрономии, так как позволяли находить расстояние между Солнцем и Землей. Впервые транзит Венеры по Солнцу собирался наблюдать Иоганн Кеплер. Но ему не удалось – он умер за шесть лет до этого события. Однако благодаря работам Кеплера транзит смог увидеть английский астроном Джереми Хоррокс в 1639 году. Наблюдал транзит Венеры по диску Солнца и Джеймс Кук в своем кругосветном путешествии. Последний транзит Венеры произошел в 2012 году.
Что касается других звезд, Отто Струве был, по-видимому, первым, кто предположил, что периодические временные падения яркости звезды могут свидетельствовать о наличии обращающейся вокруг нее планеты. Потребовалось почти 50 лет, чтобы подтвердить эту гипотезу. Первое успешное наблюдение транзита удалось провести только в самом конце XX века.
Есть две ключевые даты, касающиеся транзитного метода обнаружения внесолнечных планет: декабрь 1999 года, первое детектирование планеты HD 209458 b с помощью этого метода, и апрель 2009 года, когда в космос был отправлен охотник за экзопланетами «Кеплер», принесший в копилку человеческих знаний тысячи подтвержденных экзопланет за почти десять лет работы. Два этих события, произошедшие с перерывом в 10 лет, положили начало революции наших представлений о Галактике и о разнообразии внесолнечных миров.
HD 209458 b – газовый гигант в созвездии Пегаса (того самого, в котором был найден первый горячий юпитер), находящийся на расстоянии 159 св. лет от нас. Он совершает полный оборот вокруг своей звезды по орбите, диаметр которой равен примерно 1/8 диаметра орбиты Меркурия, раз в 3,5 земных суток. Это типичный горячий юпитер с температурой атмосферы 1 000 К, вращающийся вокруг звезды, очень похожей на наше Солнце. Изначально экзопланета была обнаружена методом радиальных скоростей с помощью спектрографа ELODIE, но в том же году две команды, работающие независимо, – первая из Великобритании (Кембридж), вторая из США (Университет штата Теннесси) – решили попробовать подтвердить ее существование с помощью транзитного метода. Несмотря на все сложности, ожидавшие ученых, они смогли наблюдать падение яркости HD 209458 примерно на 2 % каждые 3,5 суток. Две статьи об этом появились в одном и том же выпуске The Astrophysical Journal в декабре 1999 года56, 57. Таким образом, HD 209458 b в 2010-х годах стала самой изученной юпитероподобной экзопланетой. Она даже получила настоящее, нетипичное для экзопланет имя – Осирис.
Рисунок 12. Кривая блеска звезды HD 209458, полученная командой Дэвида Шарбонно в 2000 году. Провал блеска обусловлен транзитом планеты по диску звезды
Тогда как метод радиальных скоростей позволяет оценить массу планеты, с помощью транзитного метода по величине падения яркости звезды можно рассчитать радиус планеты. Осирис стал первой экзопланетой, у которой вычислили радиус, он равен 1,35 RJ. Помимо этого, транзитный метод позволяет определить ориентацию орбиты планеты относительно наблюдателя с Земли. Если мы смотрим на планету из плоскости эклиптики, то для нас она проходит по самому экватору ее звезды. Но что, если мы смотрим на планету не из плоскости эклиптики? В этом случае чем выше (или ниже) мы находимся по отношению к этой плоскости, тем ниже (или выше) по диску звезды будет проходить для нас планета. Это продолжится до тех пор, пока мы совсем не перестанем видеть планету. Чем ближе орбита планеты проходит к экватору звезды, тем дольше она будет заслонять от нас некоторую часть звездного света и тем длиннее будут транзиты. Сравнивая наблюдаемое время с рассчитанным на основе законов небесной механики, можно вычислить наклон орбиты планеты. Известная ориентация орбиты устраняет неточности в расчетах массы, сделанных с помощью метода радиальных скоростей. С учетом этих поправок масса Осириса равна 0,7 MJ. Такое комбинирование разных методов оказывается очень важным, поскольку точно измеренные масса и радиус планеты дают значение средней плотности, что является ключом к пониманию нового мира. Осирис стал не только первой планетой, обнаруженной транзитным методом, но и первой планетой, у которой определили плотность.
Зная плотность планеты, можно попытаться предсказать условия на ней. Скалистая Земля имеет плотность 5 500 кг/см3, примерно такой же плотностью обладают Меркурий и Венера. Марс наименее плотный из всех планет земной группы: отношение массы к его объему равно 3 900 кг/см3. Плотности газовых гигантов Юпитера, Урана и Нептуна примерно равны 1 500 кг/см3, а плотность Сатурна составляет 70 % плотности воды. Осирис же имеет плотность 370 кг/см3.
В силу близости к своей звезде средняя температура верхних слоев атмосферы Осириса равна 1 100 К, а разность температур на планете днем и ночью составляет примерно 500 К. Из-за этого атмосфера планеты раздувается настолько, что гравитация Осириса уже не может ее удержать, и вещество покидает верхние слои атмосферы со скоростью 100 000 т/с. Давление звездного излучения ускоряет отток газов и формирует кометоподобный хвост58. Планета как бы испаряется.
Температура атмосферы горячих юпитеров может быть еще больше. Планета KELT-9 b[39] – самый горячий из обнаруженных к настоящему времени горячих юпитеров. Сообщение об открытии этой планеты транзитным методом появилось в журнале Nature в 2017 году. Она вращается вокруг своей звезды, имеющей температуру 10 000 К, и находится от нее на расстоянии, равном всего лишь 0,1 от среднего расстояния между Меркурием и Солнцем, или 0,034 а. е. Высокая температура звезды KELT-9 нагревает атмосферу планеты до 4 300 К59, что делает ее даже более горячей, чем некоторые звезды. Из-за этого KELT-9 b больше похожа на звезду K-типа, нежели на газового гиганта. Высокие температуры на дневной стороне планеты не позволяют образовываться молекулам. Возможно, какие-то простые вещества образовываются на ночной стороне, а ионы и атомы железа и титана формируют облака, из которых идут металлические дожди.
Звезда и ее планета обмениваются энергией через приливные силы. Это те же самые силы, которые вызывают приливы на Земле и заставляют Луну поворачиваться к Земле лишь одной стороной. Эти же силы, судя по всему, ответственны за то, что KELT-9 b тоже повернута к родительской звезде только одной стороной, а ее орбита почти круговая. Масса KELT-9 b почти равна 3 MJ, а радиус еe водородной атмосферы близок к пределу Роша, после которого атмосфера уже не может существовать как единое целое, иначе она будет разрушена приливными силами. Вероятно, из-за этого KELT-9 b теряет атмосферу и за ней в пространстве, как и за Осирисом, словно за кометой, тянется хвост газа.
На конференции 30 октября 2018 года ученые NASA сообщили журналистам, что миссия телескопа «Кеплер» завершена, так как он исчерпал все запасы топлива, необходимые для периодической коррекции его положения в пространстве. К этому времени он отработал девять с половиной лет вместо положенных ему по спецификации трех с половиной. «Кеплер» обнаружил более двух с половиной тысяч экзопланет, и еще тысячи объектов, зафиксированных им, ждут проверки. Завершение миссии не стало сюрпризом. Еще в марте того же 2018 года было объявлено, что запасы топлива близки к истощению. К этому моменту два из четырех гироскопов, контролировавших положение телескопа в пространстве, вышли из строя. Последняя поломка произошла в мае 2013 года, и некоторое время «Кеплер» бездействовал, будучи неспособным ориентироваться в пространстве на должном уровне. Но инженеры NASA нашли уникальный выход из ситуации – то, что они сделали, можно назвать инженерным чудом: в 2015 году телескоп стабилизировали относительно солнечного ветра, оказывающего небольшое, но постоянное давление в одну сторону. А два оставшихся гироскопа устраняли неизбежный при таком положении дрейф. Так телескоп проработал еще три года. Операцию назвали «Второй свет» по аналогии с термином «первый свет».
1. Телескоп «Кеплер»
2. Сравнение размеров Осириса и Юпитера
3. Телескоп TESS
В апреле 2018 года на замену «Кеплеру» с космодрома на мысе Канаверал на ракете-носителе Falcon 9, принадлежащей частной компании SpaceX, в космос запустили другого охотника за экзопланетами – телескоп TESS. Он выполняет ту же задачу, которая стояла перед телескопом «Кеплер», и использует тот же метод, что использовал «Кеплер». Кроме того, оба телескопа имеют похожие размеры и массу, однако дальше начинаются различия.
Телескоп «Кеплер» обращался вокруг Солнца по чуть более высокой орбите, чем орбита Земли, и поэтому всегда находился в земной тени. В 2009 году наши знания об экзопланетах были очень скромны[40]