33 Pilkington J. D. H., et al. Observations of some further Pulsed Radio Sources // Nature. 1968. 218(5137), 126–129.
34 Wolszczan A., Frail D. A. A planetary system around the millisecond pulsar PSR1257 + 12 // Nature. 1992. 355(6356), 145–147.
35 Downs G. S. Interplanetary Navigation Using Pulsating Radio Sources. NASA Tech. Rep. 74N34150 (JPL Tech. Rep. 32-1594), Jet Propulsion Laboratory, Pasadena, CA, USA. 1974.
36 Witze A. NASA test proves pulsars can function as a celestial GPS // Nature. 2018. 553(7688), 261–262.
37 Shemar S., et al. Towards practical autonomous deep-space navigation using X-Ray pulsar timing // Experimental Astronomy. 2016. 42, 101–138.
38 Эйнштейн А., Инфельд Л. Эволюция физики. М.: АСТ, 2018.
39 Herschel W. (n.d.). Experiments on the Refrangibility of the invisible Rays of the Sun // The Scientific Papers of Sir William Herschel. 1800. 70–76.
40 Wollaston W. H. A Method of Examining Refractive and Dispersive Powers, by Prismatic Reflection // Philosophical Transactions of the Royal Society of London. 1802. 92(0), 365–380.
41 Fraunhofer J. First as lectures to the Munich Academy of Sciences in 1814 and 1815, printed in: Denkschriften der Münch. Akademie der Wissenschaften. 1817. 5, 193–226.
42 Kirchhoff G. Uber den Zusammenhang zwischen Emissionund Absorption von Licht und Warme // Monatsberichte der Akademie der Wissenschaften zu Berlin, sessions of Dec. 1859. 1860. 783–787.
43 Fizeau H. Sur les hypothèses relatives à l’éther lumineux, et sur une expérience qui paraît démontrer que le mouvement des corps change la vitesse avec laquelle // Annales de chimie et de physique. 1870. 19(4), 211.
44 Huggins W. XXI. Further observations on the spectra of some the stars and nebulae, with an attempt to determine therefrom whether these bodies are moving towards or from the earth, also observations on the spectra of the sun and of comet II., 1868 // Philosophical Transactions of the Royal Society of London. 1869. 158(II), 529.
45 Griffin R. F. A photoelectric radial-velocity spectrometer. The Astrophysical Journal. 1967. 148, 465–476.
46 Andersen J. et al. Radial velocities of southern stars obtained with the photoelectric scanner CORAVEL. III – 790 late-type bright stars // Astronomy and Astrophysics Supplement Series. 1985. 59, 15–36.
47 Griffin R. R. Accurate Wavelengths of Stellar and Telluric Absorption Lines Near 7000 A // Monthly Notices of the Royal Astronomical Society. 1973. 162(3), 255–260.
48 Campbell B., Walker G. A. H. Precision radial velocities with an absorption cell // PASP. 1979. 91, 540–545.
49 Campbell B., Walker G. A. H., Yang S. A search for substellar companions to solar-type stars // The Astrophysical Journal. 1988. 331, 902–921.
50 Latham D. W., et al. The unseen companion of HD114762: a probable brown dwarf // Nature. 1989. 339(6219), 38–40.
51 Patience J., et al. Stellar Companions to Stars with Planets // The Astrophysical Journal. 2002. 581(1), 654–665.
52 Kane S. R., Gelino, D. M. Distinguishing between stellar and planetary companions with phase monitoring // Monthly Notices of the Royal Astronomical Society. 2012. 424(1), 779–788.
53 Kiefer F. Determining the mass of the planetary candidate HD 114762 b using Gaia // Astronomy & Astrophysics. 2019. 632, L9.
54 Mayor M., Queloz D. A Jupiter-mass companion to a solar-type star // Nature. 1995. 378(6555), 355–359
55 Dawson R. I., Johnson, J. A. Origins of Hot Jupiters // Annual Review of Astronomy and Astrophysics. 2018. 56(1), 175–221.
56 Charbonneau D., et al. Detection of Planetary Transits Across a Sun-like Star // The Astrophysical Journal. 2000. 529(1), L45–L48.
57 Henry G. W., et al. A Transiting “51 Peg – like“ Planet // The Astrophysical Journal. 2000. 529(1), L41–L44.
58 Vidal-Madjar A., et al. Magnesium in the atmosphere of the planet HD 209458 b: observations of the thermosphere-exosphere transition region // Astronomy & Astrophysics. 2013. 560, A54, 12.
59 Gaudi B. S., et al. A giant planet undergoing extreme-ultraviolet irradiation by its hot massive-star host // Nature. 2017. 546, 514–518.
60 Webb G. E. The Planet Mars and Science in Victorian America // The Journal of American Culture.1980. 3(4), 573–580.
61 Raymond S. N., et al. Building the terrestrial planets: Constrained accretion in the inner Solar System // Icarus. 2009. 203(2), 644–662.
62 Goldreich P., Tremaine S. Disk-Satellite Interactions // The Astrophysical Journal. 1980. 241(1), 425–441.
63 Walsh K. J., et al. A low mass for Mars from Jupiter’s early gas-driven migration // Nature. 2011. 475(7355), 206–209.
64 Tsiganis K., et al. Origin of the orbital architecture of the giant planets of the Solar System // Nature. 2005. 435(7041), 459–461.
65 Bailey E., Batygin K. The Hot Jupiter Period – Mass Distribution as a Signature of in situ Formation // The Astrophysical Journal. 2018. 866(1), L2.
66 Mann A. Bashing holes in the tale of Earth’s troubled youth // Nature. 2018. 553(7689), 393–395.
67 Potter R. W. K., Head, J. W. Basin formation on Mercury: Caloris and the origin of its low-reflectance material // Earth and Planetary Science Letters. 2017. 474, 427–435.
68 Blewett D. T., et al. Analysis of MESSENGER high resolution images of Mercury’s hollows and implications for hollow formation // Journal of Geophysical Research: Planets. 2016. 121, 1798–1813.
69 Delitsky M. L., et al. Ices on Mercury: Chemistry of volatiles in permanently cold areas of Mercury’s north polar region // Icarus / 2017. 281, 19–31.
70 Jones B. M., Sarantos M., Orlando T. M. A New In Situ Quasi-continuous Solar-wind Source of Molecular Water on Mercury // The Astrophysical Journal. 2020. 891(2).
71 Ferriere L., et al. Shock Metamorphism of Bosumtwi Impact Crater Rocks, Shock Attenuation, and Uplift Formation // Science. 2008. 322(5908), 1678–1681.
72 Hauck S. A., et al. The curious case of Mercury’s internal structure // Journal of Geophysical Research: Planets. 2013. 118, 1204–1220.
73 Ebel D. S., Stewart S. T. The elusive origin of Mercury. In Mercury: The view after MESSENGER (Vol. 21). Cambridge University Press, 2018.
74 Benz W., et al. The Origin of Mercury / Edited by A. Balogh, L. Ksanfomality, R. von Steiger // Mercury. Space Sciences Series of ISSI (Vol. 26). Springer, New York, NY, 2008.
75 Lewis J. S. Chemistry of the planets // Annual Review of Physical Chemistry. 1973. 24(1), 339–351.
76 Cameron A. G. W. The partial volatilization of Mercury // Icarus. 1985. 64(2), 285–294.
77 Spalding C., Adams F. C. The Solar wind prevents re-accretion of debris after Mercury’s giant impact. 2020.
78 McArthur B. E., et al. Detection of a Neptune-Mass Planet in the ρ1 Cancri System Using the Hobby-Eberly Telescope // The Astrophysical Journal. 2004. 614(1), L81–L84.
79 Winn J. N., et al. A super-earth transiting a naked-eye star // The Astrophysical Journal. 2011. 737(1), L18.
80 Madhusudhan N., Lee K. K. M., Mousis O. A possible carbon-rich interior in super-earth 55 Cancri e // The Astrophysical Journal. 2012. 759(2), L40.
81 Demory B.-O., et al. A map of the large day – night temperature gradient of a super-Earth exoplanet // Nature. 2016. 532(7598), 207–209.
82 Angelo I., Hu R. A Case for an Atmosphere on Super-Earth 55 Cancri e // The Astronomical Journal. 2017. 154(6), 232.
83 Hatzes A. P., et al. A Planetary Companion to Gamma Cephei A // The Astrophysical Journal. 2003. 599(2), 1383–1394.
84 Li X., Liao S. More than six hundred new families of Newtonian periodic planar collisionless three-body orbits // Science China: Physics, Mechanics and Astronomy. 2017. 60, 129511.
85 Pascucci I., et al. Medium-Separation Binaries Do Not Affect the First Steps of Planet Formation // The Astrophysical Journal. 2008. 673, 477.
86 Doyle L. R., et al. Kepler-16: A Transiting Circumbinary Planet // Science. 2011. 333(6049), 1602–1606.
87 Dumusque X., et al. An Earth-mass planet orbiting Centauri B // Nature. 2012. 491(7423), 207–211.
88 Rajpaul V., Aigrain S., Roberts S. Ghost in the time series: no planet for Alpha Cen B // Monthly Notices of the Royal Astronomical Society: Letters. 2015. 456(1), L6–L10.
89 Anglada-Escude G., et al. A terrestrial planet candidate in a temperate orbit around Proxima Centauri // Nature. 2016. 536, 437–440.
90 Iess L., et al. The Gravity Field and Interior Structure of Enceladus // Science, 344(6179), 78–80 (2014).
91 Iess L. The Tides of Titan // Science. 2012. 337(6093), 457–459.
92 Brown M. E., Trujillo C., Rabinowitz D. Discovery of a Candidate Inner Oort Cloud Planetoid // The Astrophysical Journal. 2004. 617(1), 645–649.
93 Brown M. E., Trujillo C. A., Rabinowitz D. L. Discovery of a Planetary-sized Object in the Scattered Kuiper Belt // The Astrophysical Journal. 2005. 635(1), L97–L100.
94 Van Elteren A., et al. Survivability of planetary systems in young and dense star clusters // Astronomy & Astrophysics. 2019. 624, A120.
95 Nesvorny D. Young solar system’s fifth giant planet // The Astrophysical Journal. 2011. 742(2), L22.