Источником ацетилхолина, участвующего в поддержании бодрствования, является базальное ядро (БЯ) переднего мозга, его называют также ядром Мейнерта. Это скопление ацетилхолинпродуцирующих нейронов находится в нижних отделах переднего мозга, под таламусом. БЯ рассматривается как ключевой экстраталамический переключатель информации, идущей от ретикулярной активирующей системы ствола мозга к коре больших полушарий (другой путь активации). Кроме активирующей роли ядро Мейнерта играет большую роль в организации понимания того, что мы видим (сопоставляет зрительную информацию с ее внутренней оценкой). Другими частями ацетилхолинергической активирующей системы мозга являются педункулопонтинное ядро (ППЯ) и латеродорзальное ядро покрышки (ЛДЯ) – область в верхних отделах ствола мозга, также участвующая в процессах поддержания внимания и двигательной активности.
Химическим родственником норадреналина является нейромедиатор серотонин. Оба этих вещества относятся к катехоламинам – производным аммиака. Серотонин известен как «гормон радости», поскольку показано его участие в процессах возникновения эмоций. С недостатком серотонина и норадреналина связывают развитие депрессии. Функции этого вещества многообразны. В качестве активирующего агента он выступает, когда серотонинсодержащие нейроны ядра шва (ЯШ) воздействуют на корковые нейроны напрямую или же через торможение центра сна в гипоталамусе.
Важным веществом для поддержания уровня бодрствования является глутаминовая кислота – глутамат. Эту аминокислоту называют универсальным возбуждающим медиатором, поскольку она участвует практически во всех процессах, происходящих в ЦНС. Глутаматергическая активирующая система включает в себя медиальное и латеральное парабрахиальное ядро и скопление нейронов, известное как прецерулеус (около голубого пятна), расположенное в задней части (дорзальной покрышке) моста. У человека аналогом этих ядер является сублатеродорзальное ядро (СЛДЯ). Отсюда отростки нейронов устремляются к базальным ядрам переднего мозга (БЯ) и затем – к коре больших полушарий. Глутаматергическая система играет роль в поддержании бодрствования и в некоторых процессах быстрого сна. Она осуществляет свою активирующую деятельность посредством стимуляции холинергических структур переднего мозга, которые, в свою очередь, уже активируют новую и древнюю кору мозга. Согласно одной из концепций, именно глутаматергическая система вызывает реакцию пробуждения и поддерживает кору в состоянии тонической деполяризации в бодрствовании и быстром сне, в то время как активность всех прочих центров бодрствования является лишь следствием активации коры больших полушарий{53}. Неудивительно, что средства, подавляющие активность этой системы (блокаторы глутаматных рецепторов), являются сильными средствами для наркоза (например, кетамин и закись азота).
Биогенный амин гистамин, известный медиатор аллергии, в ЦНС выступает также в роли нейромедиатора, поддерживающего бодрствование. Практически весь мозговой гистамин содержится в парных туберомамиллярных ядрах (ТМЯ), расположенных в задней трети гипоталамуса. Гистаминергические нейроны проецируются непосредственно на клетки коры мозга и поддерживают уровень их активности в бодрствовании. Прием антигистаминных препаратов первых поколений, в связи с тем что они легко преодолевают гематоэнцефалический барьер (т. е. переходят из крови в ткань мозга), сопровождается развитием сонливости, поэтому некоторые из них (доксиламин) используются в медицинской практике в качестве снотворных.
Окончательно не ясно, участвует ли третий из катехоламинов, нейромедиатор дофамин, в поддержании бодрствования. Дофамин известен как вещество, при нехватке которого развивается болезнь Паркинсона. Большое количество дофаминовых нейронов содержится в покрышке (лат. ventral tegmentum) среднего мозга в верхних отделах ствола и в околоводопроводном сером веществе (ОСВ) (водопровод – это часть ликворной системы мозга, соединяющая полости третьего и четвертого желудочков). Активность этих нейронов повышается во время бодрствования, поэтому предполагают, что через проекции на кору мозга они оказывают возбуждающее действие. Также было показано, что разрушение ОСВ приводит к увеличению времени сна у крыс на 20 %. Большинство легальных и нелегальных психостимуляторов, таких как амфетамины и модафинил, действуют посредством стимуляции дофаминовых рецепторов. При их приеме значительно возрастает возможность поддерживать бодрствование в течение продолжительного времени, что используется, например, в условиях боевых действий. Тем не менее прием препаратов дофамина при лечении синдрома беспокойных ног не приводит к уменьшению времени сна, а при болезни Паркинсона активация постсинаптических дофаминовых рецепторов, наоборот, может вызывать сонливость и даже приступы внезапных засыпаний. Поэтому активирующая роль дофамина как нейромедиатора ставится под сомнение. Несомненно, он участвует в поддержании эмоциональных проявлений бодрствования и быстрого сна. С увеличением уровня дофамина связывают процессы эмоционального подкрепления при выполнении заданий (система вознаграждения) и переживания сновидений.
Особую роль в поддержании уровня бодрствования и организации смены фаз сна с медленного сна на быстрый играет орексиновая/гипокретиновая система мозга. Двойное название она получила в связи с тем, что вещество, которое вырабатывается в соответствующих клетках, было обнаружено одновременно двумя группами ученых в 1998 г. Исследователи из США Луис Деличи и Томас Килдаф назвали его гипокретином (гипоталамическим секретином), поскольку он был выделен из гипоталамуса подопытных мышей и по структуре, как тогда казалось (но в дальнейшем не подтвердилось), похож на кишечный пептид секретин. Одновременно и независимо от них японские ученые Кусаки Оно и Такеши Сакураи выделили и назвали обнаруженное ими вещество орексином, поскольку оно влияло на пищевое поведение (орексис по-гречески – «аппетит»). До сих пор разные группы ученых в публикациях называют этот нейромедиатор то орексином, то гипокретином, не отдавая предпочтения ни одному из названий.
Нейроны, содержащие орексин, расположены в области среднего гипоталамуса. Функция их уникальна, поскольку, с одной стороны, они непосредственно активируют корковые нейроны, не позволяя им «засыпать», с другой – воздействуют на нейроны иных активирующих систем (норадреналиновой, ацетилхолиновой, дофаминовой, серотониновой, гистаминовой, глутаматной), являясь «активаторами активаторов». Орексины получили большую известность, когда было доказано, что развитие такой болезни, как нарколепсия, связано с почти тотальной гибелью продуцирующих этот медиатор нейронов.
Кроме активации корковых нейронов для поддержания их работоспособности важной функцией активирующих систем мозга является подавление активности центров сна. Общим для центров сна является то, что в них выделяется не активирующий медиатор, а, наоборот, тормозящий – гамма-аминомасляная кислота (ГАМК). Сон наступает тогда, когда это подавляющее действие активирующих систем уменьшается и центры сна «вырываются из-под контроля» и сами начинают подавлять центры бодрствования.
Известно три мозговых центра, связанных с медленноволновым сном: это вентролатеральная преоптическая область гипоталамуса (ВЛПО), медиальная преоптическая область гипоталамуса (МПО) и парафациальная зона вблизи ядра одиночного пути в продолговатом мозге. Нейроны этих областей содержат тормозной медиатор ГАМК. Преоптическая область гипоталамуса получила свое название, поскольку находится рядом с перекрестом зрительных нервов. При разрушении этой области количество медленного и быстрого сна уменьшается более чем в два раза. ВЛПО является центром, инициирующим сон, – это именно та область, которая разрушается при летаргическом энцефалите, что было замечено Константином фон Экономо. Случаи этого энцефалита регистрируются очень редко, с 1940 г. описано только 40 больных{54}. Термин «летаргический сон» в настоящее время используется для обозначения длительного, продолжительностью не менее нескольких суток, периода сна. При рассмотрении случаев, называемых в быту «летаргическим сном», это состояние почти всегда оказывается проявлением истерии.
Нейроны ВЛПО становятся активны при переходе от бодрствования ко сну и усиливают свою деятельность по мере углубления сна. Клетки другого центра сна – МПО – начинают активно разряжаться еще до засыпания, а затем остаются активными в течение всего периода медленного сна и усиливают свою деятельность в период быстрого сна. Существует еще один центр в стволе мозга (точнее, в области продолговатого мозга), открытый Джузеппе Моруцци с коллегами в 1961 г., при раздражении которого электрическим током также наступает сон. В эксперименте на животных при отделении этого центра от остального мозга сон не исчезает, но сокращается на треть. Стволовой центр сна тесно связан с каротидным синусом – образованием, расположенным в месте разветвления общей сонной артерии на наружную и внутреннюю. Каротидный синус имеет барорецепторы, которые регистрируют и посылают в мозг информацию об артериальном давлении и химических показателях крови. Раздражение каротидного синуса активирует стволовой центр Моруцци, т. е. провоцирует засыпание, не зря эти артерии называют «сонными».
Существует еще одна популяция нейронов, которая активна в глубоком медленном сне, – это нейроны префронтальной области коры мозга. Активность этих нервных клеток увеличивается по мере углубления сна и увеличения числа дельта-волн. Представленность нейронов, связанных с медленным сном, в коре мозга невелика, и их роль в возникновении или поддержании состояния сна изучена недостаточно.
К двучленной композиции из активирующих и тормозящих систем, которые борются за право погрузить в сон кору головного мозга, присоединяется еще один участник – внутренние часы организма. «Внутренние часы» – не просто красивое словосочетание. Это парные скопления нейронов в супрахиазменной области гипоталамуса. Супрахиазменной областью это место было названо, поскольку оно расположено прямо над перекрестом зрительных нервов («хиазма» на латыни – перекрест). В супрахиазменных ядрах находятся специальные нейроны, роль которых сводится к поддержанию постоянной ритмической активности. Химические реакции в них «закольцованы» и повторяются с периодом, близким к 24-часовому – времени вращения Земли вокруг своей оси, но не равны ему. О независимости периода внутренних часов от внешних факторов свидетельствуют результаты экспериме